19 research outputs found

    Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change

    Get PDF
    Carbon dioxide concentrating mechanisms (also known as inorganic carbon concentrating mechanisms; both abbreviated as CCMs) presumably evolved under conditions of low CO2 availability. However, the timing of their origin is unclear since there are no sound estimates from molecular clocks, and even if there were, there are no proxies for the functioning of CCMs. Accordingly, we cannot use previous episodes of high CO2 (e.g. the Palaeocene-Eocene Thermal Maximum) to indicate how organisms with CCMs responded. Present and predicted environmental change in terms of increased CO2 and temperature are leading to increased CO2 and HCO3- and decreased CO32- and pH in surface seawater, as well as decreasing the depth of the upper mixed layer and increasing the degree of isolation of this layer with respect to nutrient flux from deeper waters. The outcome of these forcing factors is to increase the availability of inorganic carbon, photosynthetic active radiation (PAR) and ultraviolet B radiation (UVB) to aquatic photolithotrophs and to decrease the supply of the nutrients (combined) nitrogen and phosphorus and of any non-aeolian iron. The influence of these variations on CCM expression has been examined to varying degrees as acclimation by extant organisms. Increased PAR increases CCM expression in terms of CO2 affinity, while increased UVB has a range of effects in the organisms examined; little relevant information is available on increased temperature. Decreased combined nitrogen supply generally increases CO2 affinity, decreased iron availability increases CO2 affinity, and decreased phosphorus supply has varying effects on the organisms examined. There are few data sets showing interactions among the observed changes, and even less information on genetic (adaptation) changes in response to the forcing factors. In freshwaters, changes in phytoplankton species composition may alter with environmental change with consequences for frequency of species with or without CCMs. The information available permits less predictive power as to the effect of the forcing factors on CCM expression than for their overall effects on growth. CCMs are currently not part of models as to how global environmental change has altered, and is likely to further alter, algal and aquatic plant primary productivity

    A two-phase case-control study for colorectal cancer genetic susceptibility: candidate genes from chromosomal regions 9q22 and 3q22.

    No full text
    BACKGROUND: Colorectal cancer (CRC) is the second cause of cancer-related death in the Western world. Much of the CRC genetic risk remains unidentified and may be attributable to a large number of common, low-penetrance genetic variants. Genetic linkage studies in CRC families have reported additional association with regions 9q22-31, 3q21-24, 7q31, 11q, 14q and 22q. There are several plausible candidate genes for CRC susceptibility within the aforementioned linkage regions including PTCH1, XPA and TGFBR1 in 9q22-31, and EPHB1 and MRAS in 3q21-q24. METHODS: CRC cases and matched controls were from EPICOLON, a prospective, multicentre, nationwide Spanish initiative, composed of two independent phases. Phase 1 corresponded to 515 CRC cases and 515 controls, whereas phase 2 consisted of 901 CRC cases and 909 controls. Genotyping was performed for 172 single-nucleotide polymorphisms (SNPs) in 84 genes located within regions 9q22-31 and 3q21-q24. RESULTS: None of the 172 SNPs analysed in our study could be formally associated with CRC risk. However, rs1444601 (TOPBP1) and rs13088006 (CDV3) in region 3q22 showed interesting results and may have an effect on CRC risk. CONCLUSIONS: TOPBP1 and CDV3 genetic variants on region 3q22 may modulate CRC risk. Further validation and meta-analysis should be undertaken in larger CRC cohorts

    Development of a Computerized Adaptive Test for Schizotypy Assessment

    Get PDF
    Background:Schizotypal traits in adolescents from the general population represent the behavioral expression of liability for psychotic disorders. Schizotypy assessment in this sector of population has advanced considerably in the last few years; however, it is necessary to incorporate recent advances in psychological and educational measurement.Objective:The main goal of this study was to develop a Computerized Adaptive Test (CAT) to evaluate schizotypy through "The Oviedo Questionnaire for Schizotypy Assessment" (ESQUIZO-Q), in non-clinical adolescents.Methods:The final sample consisted of 3,056 participants, 1,469 males, with a mean age of 15.9 years (SD = 1.2).Results:The results indicated that the ESQUIZO-Q scores presented adequate psychometric properties under both Classical Test Theory and Item Response Theory. The Information Function estimated using the Gradual Response Model indicated that the item pool effectively assesses schizotypy at the high end of the latent trait. The correlation between the CAT total scores and the paper-and-pencil test was 0.92. The mean number of presented items in the CAT with the standard error fixed at 0.30 was of 34 items.Conclusion:The CAT showed adequate psychometric properties for schizotypy assessment in the general adolescent population. The ESQUIZO-Q adaptive version could be used as a screening method for the detection of adolescents at risk for psychosis in both educational and mental health settings. © 2013 Fonseca-Pedrero et al
    corecore