393 research outputs found

    A comparative analysis of scalable and context-aware trust management approaches for internet of things

    Full text link
    © Springer International Publishing Switzerland 2015. The Internet of Things - IoT - is a new paradigm in technology that allows most physical ‘things’ to contact each other. Trust between IoT devices is a critical factor. Trust in the IoT environment can be modeled using various approaches, such as confidence level and reputation parameters. Furthermore, trust is an important element in engineering reliable and scalable networks. In this paper, we survey scalable and context-aware trust management for IoT from three perspectives. First, we present an overview of the IoT and the importance of trust in relation to it, and then we provide an in-depth trust/reliable management protocol for the IoT and evaluate comparable trust management protocols. We also investigate a scalable solution for trust management in the IoT and provide a comparative evaluation of existing trust solutions. We then pre-sent a context-aware assessment for the IoT and compare the different trust solutions. Lastly, we give a full comparative analysis of trust/reliability management in the IoT. Our results are drawn from this comparative analysis, and directions for future research are outlined

    A Blockchain-Based Multi-Factor Authentication Model for a Cloud-Enabled Internet of Vehicles.

    Full text link
    Continuous and emerging advances in Information and Communication Technology (ICT) have enabled Internet-of-Things (IoT)-to-Cloud applications to be induced by data pipelines and Edge Intelligence-based architectures. Advanced vehicular networks greatly benefit from these architectures due to the implicit functionalities that are focused on realizing the Internet of Vehicle (IoV) vision. However, IoV is susceptible to attacks, where adversaries can easily exploit existing vulnerabilities. Several attacks may succeed due to inadequate or ineffective authentication techniques. Hence, there is a timely need for hardening the authentication process through cutting-edge access control mechanisms. This paper proposes a Blockchain-based Multi-Factor authentication model that uses an embedded Digital Signature (MFBC_eDS) for vehicular clouds and Cloud-enabled IoV. Our proposed MFBC_eDS model consists of a scheme that integrates the Security Assertion Mark-up Language (SAML) to the Single Sign-On (SSO) capabilities for a connected edge to cloud ecosystem. MFBC_eDS draws an essential comparison with the baseline authentication scheme suggested by Karla and Sood. Based on the foundations of Karla and Sood's scheme, an embedded Probabilistic Polynomial-Time Algorithm (ePPTA) and an additional Hash function for the Pi generated during Karla and Sood's authentication were proposed and discussed. The preliminary analysis of the proposition shows that the approach is more suitable to counter major adversarial attacks in an IoV-centered environment based on the Dolev-Yao adversarial model while satisfying aspects of the Confidentiality, Integrity, and Availability (CIA) triad

    Human Behavior Analysis Using Intelligent Big Data Analytics.

    Full text link
    Intelligent big data analysis is an evolving pattern in the age of big data science and artificial intelligence (AI). Analysis of organized data has been very successful, but analyzing human behavior using social media data becomes challenging. The social media data comprises a vast and unstructured format of data sources that can include likes, comments, tweets, shares, and views. Data analytics of social media data became a challenging task for companies, such as Dailymotion, that have billions of daily users and vast numbers of comments, likes, and views. Social media data is created in a significant amount and at a tremendous pace. There is a very high volume to store, sort, process, and carefully study the data for making possible decisions. This article proposes an architecture using a big data analytics mechanism to efficiently and logically process the huge social media datasets. The proposed architecture is composed of three layers. The main objective of the project is to demonstrate Apache Spark parallel processing and distributed framework technologies with other storage and processing mechanisms. The social media data generated from Dailymotion is used in this article to demonstrate the benefits of this architecture. The project utilized the application programming interface (API) of Dailymotion, allowing it to incorporate functions suitable to fetch and view information. The API key is generated to fetch information of public channel data in the form of text files. Hive storage machinist is utilized with Apache Spark for efficient data processing. The effectiveness of the proposed architecture is also highlighted

    Monitoring System-Based Flying IoT in Public Health and Sports Using Ant-Enabled Energy-Aware Routing.

    Full text link
    In recent decades, the Internet of flying networks has made significant progress. Several aerial vehicles communicate with one another to form flying ad hoc networks. Unmanned aerial vehicles perform a wide range of tasks that make life easier for humans. However, due to the high frequency of mobile flying vehicles, network problems such as packet loss, latency, and perhaps disrupted channel links arise, affecting data delivery. The use of UAV-enabled IoT in sports has changed the dynamics of tracking and working on player safety. WBAN can be merged with aerial vehicles to collect data regarding health and transfer it to a base station. Furthermore, the unbalanced energy usage of flying things will result in earlier mission failure and a rapid decline in network lifespan. This study describes the use of each UAV's residual energy level to ensure a high level of safety using an ant-based routing technique called AntHocNet. In health care, the use of IoT-assisted aerial vehicles would increase operational performance, surveillance, and automation optimization to provide a smart application of flying IoT. Apart from that, aerial vehicles can be used in remote communication for treatment, medical equipment distribution, and telementoring. While comparing routing algorithms, simulation findings indicate that the proposed ant-based routing protocol is optimal

    Leveraging convolutional neural network for COVID-19 disease detection using CT scan images

    Full text link
    In 2020, the world faced an unprecedented pandemic outbreak of cor-onavirus disease (COVID-19), which causes severe threats to patients suffering from diabetes, kidney problems, and heart problems. A rapid testing mechanism is a primary obstacle to controlling the spread of COVID-19. Current tests focus on the reverse transcription-polymerase chain reaction (RT-PCR). The PCR test takes around 4–6 h to identify COVID-19 patients. Various research has recom-mended AI-based models leveraging machine learning, deep learning, and neural networks to classify COVID-19 and non-COVID patients from chest X-ray and computerized tomography (CT) scan images. However, no model can be claimed as a standard since models use different datasets. Convolutional neural network (CNN)-based deep learning models are widely used for image analysis to diag-nose and classify various diseases. In this research, we develop a CNN-based diagnostic model to detect COVID-19 patients by analyzing the features in CT scan images. This research considered a publicly available CT scan dataset and fed it into the proposed CNN model to classify COVID-19 infected patients. The model achieved 99.76%, 96.10%, and 96% accuracy in training, validation, and test phases, respectively. It achieved scores of 0.986 in area under curve (AUC) and 0.99 in the precision-recall curve (PRC). We compared the model’s performance to that of three state-of-the-art pretrained models (MobileNetV2, InceptionV3, and Xception). The results show that the model can be used as a diagnostic tool for digital healthcare, particularly in COVID-19 chest CT image classification

    Privacy-Aware Data Forensics of VRUs Using Machine Learning and Big Data Analytics

    Full text link
    The present spreading out of big data found the realization of AI and machine learning. With the rise of big data and machine learning, the idea of improving accuracy and enhancing the efficacy of AI applications is also gaining prominence. Machine learning solutions provide improved guard safety in hazardous traffic circumstances in the context of traffic applications. The existing architectures have various challenges, where data privacy is the foremost challenge for vulnerable road users (VRUs). The key reason for failure in traffic control for pedestrians is flawed in the privacy handling of the users. The user data are at risk and are prone to several privacy and security gaps. If an invader succeeds to infiltrate the setup, exposed data can be malevolently influenced, contrived, and misrepresented for illegitimate drives. In this study, an architecture is proposed based on machine learning to analyze and process big data efficiently in a secure environment. The proposed model considers the privacy of users during big data processing. The proposed architecture is a layered framework with a parallel and distributed module using machine learning on big data to achieve secure big data analytics. The proposed architecture designs a distinct unit for privacy management using a machine learning classifier. A stream processing unit is also integrated with the architecture to process the information. The proposed system is apprehended using real-time datasets from various sources and experimentally tested with reliable datasets that disclose the effectiveness of the proposed architecture. The data ingestion results are also highlighted along with training and validation results

    Characteristics and anticancer properties of Sunitinib malate-loaded poly-lactic-co-glycolic acid nanoparticles against human colon cancer HT-29 cells lines

    Get PDF
    Purpose: To develop poly-lactic-co-glycolic acid (PLGA) -based nanoparticles (NPs) for the delivery of sunitinib malate (STM) to colon cancer cells.Methods: Three different formulations (F1 – F3) were developed by nano-precipitation technique using various concentrations of PLGA. The NPs were evaluated for particle size, polydispersity index, zeta potential, drug entrapment, and drug loading, using differential scanning calorimetry (DSC), Fouriertransform infrared spectroscopy (FTIR), x-ray diffraction (XRD), and scanning electron microscopy (SEM). Furthermore, in vitro drug release and anticancer studies were carried out on the formulations.Results: Among the three NPs, optimized NP (F3) of STM was chosen for in vitro anti-cancer study against H-29 human colon cancer cells lines based on its particle size (132.9 nm), PDI (0.115), zeta potential (-38.12 mV), entrapment efficiency (52.42 %), drug loading (5.24 %), and drug release (91.26 % in 48 h). A significant anti-cancer activity of the optimized NPs was observed, relative to free STM.Conclusion: These findings suggest that STM-loaded NPs possess significant anti-cancer activity against human colon cancer HT-29 cells lines.Keywords: Sunitinib malate, Poly-lactic-co-glycolic acid, Nanoparticles, Colon cance

    Identification of Pneumonia Disease Applying an Intelligent Computational Framework Based on Deep Learning and Machine Learning Techniques

    Full text link
    Pneumonia is a very common and fatal disease, which needs to be identified at the initial stages in order to prevent a patient having this disease from more damage and help him/her in saving his/her life. Various techniques are used for the diagnosis of pneumonia including chest X-ray, CT scan, blood culture, sputum culture, fluid sample, bronchoscopy, and pulse oximetry. Medical image analysis plays a vital role in the diagnosis of various diseases like MERS, COVID-19, pneumonia, etc. and is considered to be one of the auspicious research areas. To analyze chest X-ray images accurately, there is a need for an expert radiologist who possesses expertise and experience in the desired domain. According to the World Health Organization (WHO) report, about 2/3 people in the world still do not have access to the radiologist, in order to diagnose their disease. This study proposes a DL framework to diagnose pneumonia disease in an efficient and effective manner. Various Deep Convolutional Neural Network (DCNN) transfer learning techniques such as AlexNet, SqueezeNet, VGG16, VGG19, and Inception-V3 are utilized for extracting useful features from the chest X-ray images. In this study, several machine learning (ML) classifiers are utilized. The proposed system has been trained and tested on chest X-ray and CT images dataset. In order to examine the stability and effectiveness of the proposed system, different performance measures have been utilized. The proposed system is intended to be beneficial and supportive for medical doctors to accurately and efficiently diagnose pneumonia disease

    Facile Synthesis of Palladium-Nanoparticle-Embedded N-Doped Carbon Fibers for Electrochemical Sensing

    Get PDF
    2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. In recent years, there have been many studies on metal/carbon hybrid materials for electrochemical applications. However, reducing the metal content in catalysts is still a challenge. Here, a facile synthesis of palladium (Pd) nanoparticle-embedded N-doped carbon fibers (Pd/N-C) through electropolymerization and reduction methods is demonstrated. The as-prepared Pd/N-C contains only 1.5wt% Pd. Under optimal conditions, bisphenolA is detected by using amperometry in two dynamic ranges from 0.1 to 10μm and from 10 to 200μm, and the obtained correlation coefficients are close to 0.9836 and 0.9987, respectively. The detection limit (DL) for bisphenolA is determined to be 29.44 (±0.77)nm

    Facile Synthesis of Palladium-Nanoparticle-Embedded N-Doped Carbon Fibers for Electrochemical Sensing

    Get PDF
    2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim. In recent years, there have been many studies on metal/carbon hybrid materials for electrochemical applications. However, reducing the metal content in catalysts is still a challenge. Here, a facile synthesis of palladium (Pd) nanoparticle-embedded N-doped carbon fibers (Pd/N-C) through electropolymerization and reduction methods is demonstrated. The as-prepared Pd/N-C contains only 1.5wt% Pd. Under optimal conditions, bisphenolA is detected by using amperometry in two dynamic ranges from 0.1 to 10μm and from 10 to 200μm, and the obtained correlation coefficients are close to 0.9836 and 0.9987, respectively. The detection limit (DL) for bisphenolA is determined to be 29.44 (±0.77)nm
    • …
    corecore