1,367 research outputs found

    Stochastic Invariants for Probabilistic Termination

    Full text link
    Termination is one of the basic liveness properties, and we study the termination problem for probabilistic programs with real-valued variables. Previous works focused on the qualitative problem that asks whether an input program terminates with probability~1 (almost-sure termination). A powerful approach for this qualitative problem is the notion of ranking supermartingales with respect to a given set of invariants. The quantitative problem (probabilistic termination) asks for bounds on the termination probability. A fundamental and conceptual drawback of the existing approaches to address probabilistic termination is that even though the supermartingales consider the probabilistic behavior of the programs, the invariants are obtained completely ignoring the probabilistic aspect. In this work we address the probabilistic termination problem for linear-arithmetic probabilistic programs with nondeterminism. We define the notion of {\em stochastic invariants}, which are constraints along with a probability bound that the constraints hold. We introduce a concept of {\em repulsing supermartingales}. First, we show that repulsing supermartingales can be used to obtain bounds on the probability of the stochastic invariants. Second, we show the effectiveness of repulsing supermartingales in the following three ways: (1)~With a combination of ranking and repulsing supermartingales we can compute lower bounds on the probability of termination; (2)~repulsing supermartingales provide witnesses for refutation of almost-sure termination; and (3)~with a combination of ranking and repulsing supermartingales we can establish persistence properties of probabilistic programs. We also present results on related computational problems and an experimental evaluation of our approach on academic examples.Comment: Full version of a paper published at POPL 2017. 20 page

    Strong, Weak and Branching Bisimulation for Transition Systems and Markov Reward Chains: A Unifying Matrix Approach

    Full text link
    We first study labeled transition systems with explicit successful termination. We establish the notions of strong, weak, and branching bisimulation in terms of boolean matrix theory, introducing thus a novel and powerful algebraic apparatus. Next we consider Markov reward chains which are standardly presented in real matrix theory. By interpreting the obtained matrix conditions for bisimulations in this setting, we automatically obtain the definitions of strong, weak, and branching bisimulation for Markov reward chains. The obtained strong and weak bisimulations are shown to coincide with some existing notions, while the obtained branching bisimulation is new, but its usefulness is questionable

    Bioactivity of the Murex Homeopathic Remedy and of Extracts from an Australian Muricid Mollusc against Human Cancer Cells

    Get PDF
    Marine molluscs from the family Muricidae are the source of a homeopathic remedy Murex, which is used to treat a range of conditions, including cancer. The aim of this study was to evaluate the in vitro bioactivity of egg mass extracts of the Australian muricid Dicathais orbita, in comparison to the Murex remedy, against human carcinoma and lymphoma cells. Liquid chromatography coupled with mass spectrometry (LC-MS) was used to characterize the chemical composition of the extracts and homeopathic remedy, focusing on biologically active brominated indoles. The MTS (tetrazolium salt) colorimetric assay was used to determine effects on cell viability, while necrosis and apoptosis induction were investigated using flow cytometry (propidium iodide and Annexin-V staining, resp.). Cells were treated with varying concentrations (1–0.01 mg/mL) of crude and semi-purified extracts or preparations (dilute 1 M and concentrated 4 mg/mL) from the Murex remedy (4 h). The Murex remedy showed little biological activity against the majority of cell lines tested. In contrast, the D. orbita egg extracts significantly decreased cell viability in the majority of carcinoma cell lines. Flow cytometry revealed these extracts induce necrosis in HT29 colorectal cancer cells, whereas apoptosis was induced in Jurkat cells. These findings highlight the biomedical potential of Muricidae extracts in the development of a natural therapy for the treatment of neoplastic tumors and lymphomas

    Value Iteration for Long-run Average Reward in Markov Decision Processes

    Full text link
    Markov decision processes (MDPs) are standard models for probabilistic systems with non-deterministic behaviours. Long-run average rewards provide a mathematically elegant formalism for expressing long term performance. Value iteration (VI) is one of the simplest and most efficient algorithmic approaches to MDPs with other properties, such as reachability objectives. Unfortunately, a naive extension of VI does not work for MDPs with long-run average rewards, as there is no known stopping criterion. In this work our contributions are threefold. (1) We refute a conjecture related to stopping criteria for MDPs with long-run average rewards. (2) We present two practical algorithms for MDPs with long-run average rewards based on VI. First, we show that a combination of applying VI locally for each maximal end-component (MEC) and VI for reachability objectives can provide approximation guarantees. Second, extending the above approach with a simulation-guided on-demand variant of VI, we present an anytime algorithm that is able to deal with very large models. (3) Finally, we present experimental results showing that our methods significantly outperform the standard approaches on several benchmarks

    On the relation between Differential Privacy and Quantitative Information Flow

    Get PDF
    Differential privacy is a notion that has emerged in the community of statistical databases, as a response to the problem of protecting the privacy of the database's participants when performing statistical queries. The idea is that a randomized query satisfies differential privacy if the likelihood of obtaining a certain answer for a database xx is not too different from the likelihood of obtaining the same answer on adjacent databases, i.e. databases which differ from xx for only one individual. Information flow is an area of Security concerned with the problem of controlling the leakage of confidential information in programs and protocols. Nowadays, one of the most established approaches to quantify and to reason about leakage is based on the R\'enyi min entropy version of information theory. In this paper, we analyze critically the notion of differential privacy in light of the conceptual framework provided by the R\'enyi min information theory. We show that there is a close relation between differential privacy and leakage, due to the graph symmetries induced by the adjacency relation. Furthermore, we consider the utility of the randomized answer, which measures its expected degree of accuracy. We focus on certain kinds of utility functions called "binary", which have a close correspondence with the R\'enyi min mutual information. Again, it turns out that there can be a tight correspondence between differential privacy and utility, depending on the symmetries induced by the adjacency relation and by the query. Depending on these symmetries we can also build an optimal-utility randomization mechanism while preserving the required level of differential privacy. Our main contribution is a study of the kind of structures that can be induced by the adjacency relation and the query, and how to use them to derive bounds on the leakage and achieve the optimal utility

    Direct optical probe of magnon topology in two-dimensional quantum magnets

    Get PDF
    Controlling edge states of topological magnon insulators is a promising route to stable spintronics devices. However, to experimentally ascertain the topology of magnon bands is a challenging task. Here we derive a fundamental relation between the light-matter coupling and the quantum geometry of magnon states. This allows to establish the two-magnon Raman circular dichroism as an optical probe of magnon topology in honeycomb magnets, in particular of the Chern number and the topological gap. Our results pave the way for interfacing light and topological magnons in functional quantum devices

    Completely positive maps with memory

    Full text link
    The prevailing description for dissipative quantum dynamics is given by the Lindblad form of a Markovian master equation, used under the assumption that memory effects are negligible. However, in certain physical situations, the master equation is essentially of a non-Markovian nature. This paper examines master equations that possess a memory kernel, leading to a replacement of white noise by colored noise. The conditions under which this leads to a completely positive, trace-preserving map are discussed for an exponential memory kernel. A physical model that possesses such an exponential memory kernel is presented. This model contains a classical, fluctuating environment based on random telegraph signal stochastic variables.Comment: 4 page
    corecore