42 research outputs found

    Genetic characterization of flea-derived Bartonella species from native animals in Australia suggests host-parasite co-evolution

    Get PDF
    Fleas are important arthropod vectors for a variety of diseases in veterinary and human medicine, and bacteria belonging to the genus Bartonella are among the organisms most commonly transmitted by these ectoparasites. Recently, a number of novel Bartonella species and novel species candidates have been reported in marsupial fleas in Australia. In the present study the genetic diversity of marsupial fleas was investigated; 10 species of fleas were collected from seven different marsupial and placental mammal hosts in Western Australia including woylies (Bettongia penicillata), western barred bandicoots (Perameles bougainville), mardos (Antechinus flavipes), bush rats (Rattus fuscipes), red foxes (Vulpes vulpes), feral cats (Felis catus) and rabbits (Oryctolagus cuniculus). PCR and sequence analysis of the cytochrome oxidase subunit I (COI) and the 18S rRNA genes from these fleas was performed. Concatenated phylogenetic analysis of the COI and 18S rRNA genes revealed a close genetic relationship between marsupial fleas, with Pygiopsylla hilli from woylies, Pygiopsylla tunneyi from western barred bandicoots and Acanthopsylla jordani from mardos, forming a separate cluster from fleas collected from the placental mammals in the same geographical area. The clustering of Bartonella species with their marsupial flea hosts suggests co-evolution of marsupial hosts, marsupial fleas and Bartonella species in Australia

    Identification of novel trypanosome genotypes in native Australian marsupials

    Get PDF
    In the present study, the occurrence and molecular phylogeny of trypanosome parasites were studied in both wild and captive marsupials from Western Australia and Queensland. Blood samples were screened by PCR at the 18S rDNA locus, and the glycosomal glyceraldehyde phosphate dehydrogenase gene. Overall, 5.3% of the blood samples were positive at the 18S rDNA locus. All positives belonged to wild-captured Western Australian individuals, where trypanosome-specific DNA was detected in 9.8% of the screened samples from wild marsupials, in common brushtail possums, and woylies. The detection rate of trypanosome DNA in these two host species was 12.5% and 20%, respectively. Phylogenetic analyses based on two loci, indicated that the possum-derived trypanosome isolates were genetically distinct, and most closely related to the Australian marsupial trypanosomes H25 from a kangaroo, and BRA2 from a bush rat. This is the first study to genetically characterise trypanosome isolates from possums. The analysis of the woylie-derived isolates demonstrated that this marsupial host can harbour multiple genotypes within the same geographical location and furthermore multiple genotypes within the same host, indicative of mixed infections. All the woylie-derived genotypes grouped with trypanosomes found in Australian marsupials, suggesting that they are more likely to belong to an endemic or Australasian trypanosome species. This is the first study to genetically characterise trypanosome isolates from possums (Trichosurus vulpecula). Although the clinical significance of these infections is currently unknown, the identification of these novel sequences may support future investigations on transmission, threats to endangered wildlife, and evolutionary history of the genus Trypanosoma

    Piroplasms of New Zealand seabirds

    Get PDF
    Blood and ectoparasitic ticks were collected from migratory seabirds in New Zealand, including Australasian gannets (n=13) from two sites and red-billed gulls (n=9) and white-fronted terns (n=2) from a third location. Blood smears were screened for parasite presence by microscopy, while DNA from blood samples was subjected to PCR for the presence of tick-transmitted protozoan haemoparasites belonging to the order Piroplasmida. Parasites were identified by comparing small subunit ribosomal RNA (18S rDNA) gene sequences to related sequences on GenBank. Analyses indicated that nine birds were infected with unknown variants of a Babesia poelea-like parasite (recorded as genotypes I and II), while four harboured a piroplasm that was genetically similar to Babesia kiwiensis. There was no parasite stratification by bird species; both the gannets and gulls were positive for all three parasites, while the terns were positive for the B. kiwiensis-like and the B. poelea-like (genotype I) parasites. The B. kiwiensis-like parasite found in the birds was also found in two species of ticks: Carios capensis and Ixodes eudyptidis. This represents the first report of Babesia-positive ticks parasitising seabirds in New Zealand. The lack of host specificity and evidence of wide ranging distributions of the three piroplasm genotypes suggests there is a high degree of haemoparasite transmission occurring naturally between New Zealand seabird populations and species

    De Sitter and Schwarzschild-De Sitter According to Schwarzschild and De Sitter

    Full text link
    When de Sitter first introduced his celebrated spacetime, he claimed, following Schwarzschild, that its spatial sections have the topology of the real projective space RP^3 (that is, the topology of the group manifold SO(3)) rather than, as is almost universally assumed today, that of the sphere S^3. (In modern language, Schwarzschild was disturbed by the non-local correlations enforced by S^3 geometry.) Thus, what we today call "de Sitter space" would not have been accepted as such by de Sitter. There is no real basis within classical cosmology for preferring S^3 to RP^3, but the general feeling appears to be that the distinction is in any case of little importance. We wish to argue that, in the light of current concerns about the nature of de Sitter space, this is a mistake. In particular, we argue that the difference between "dS(S^3)" and "dS(RP^3)" may be very important in attacking the problem of understanding horizon entropies. In the approach to de Sitter entropy via Schwarzschild-de Sitter spacetime, we find that the apparently trivial difference between RP^3 and S^3 actually leads to very different perspectives on this major question of quantum cosmology.Comment: 26 pages, 8 figures, typos fixed, references added, equation numbers finally fixed, JHEP versio

    Can the dark energy equation-of-state parameter w be less than -1?

    Full text link
    Models of dark energy are conveniently characterized by the equation-of-state parameter w=p/\rho, where \rho is the energy density and p is the pressure. Imposing the Dominant Energy Condition, which guarantees stability of the theory, implies that w \geq -1. Nevertheless, it is conceivable that a well-defined model could (perhaps temporarily) have w<-1, and indeed such models have been proposed. We study the stability of dynamical models exhibiting w<-1 by virtue of a negative kinetic term. Although naively unstable, we explore the possibility that these models might be phenomenologically viable if thought of as effective field theories valid only up to a certain momentum cutoff. Under our most optimistic assumptions, we argue that the instability timescale can be greater than the age of the universe, but only if the cutoff is at or below 100 MeV. We conclude that it is difficult, although not necessarily impossible, to construct viable models of dark energy with w<-1; observers should keep an open mind, but the burden is on theorists to demonstrate that any proposed new models are not ruled out by rapid vacuum decay.Comment: 29 pages, 8 figures, minor corrections, reference adde

    State of the climate in 2013

    Get PDF
    In 2013, the vast majority of the monitored climate variables reported here maintained trends established in recent decades. ENSO was in a neutral state during the entire year, remaining mostly on the cool side of neutral with modest impacts on regional weather patterns around the world. This follows several years dominated by the effects of either La Niña or El Niño events. According to several independent analyses, 2013 was again among the 10 warmest years on record at the global scale, both at the Earths surface and through the troposphere. Some regions in the Southern Hemisphere had record or near-record high temperatures for the year. Australia observed its hottest year on record, while Argentina and New Zealand reported their second and third hottest years, respectively. In Antarctica, Amundsen-Scott South Pole Station reported its highest annual temperature since records began in 1957. At the opposite pole, the Arctic observed its seventh warmest year since records began in the early 20th century. At 20-m depth, record high temperatures were measured at some permafrost stations on the North Slope of Alaska and in the Brooks Range. In the Northern Hemisphere extratropics, anomalous meridional atmospheric circulation occurred throughout much of the year, leading to marked regional extremes of both temperature and precipitation. Cold temperature anomalies during winter across Eurasia were followed by warm spring temperature anomalies, which were linked to a new record low Eurasian snow cover extent in May. Minimum sea ice extent in the Arctic was the sixth lowest since satellite observations began in 1979. Including 2013, all seven lowest extents on record have occurred in the past seven years. Antarctica, on the other hand, had above-average sea ice extent throughout 2013, with 116 days of new daily high extent records, including a new daily maximum sea ice area of 19.57 million km2 reached on 1 October. ENSO-neutral conditions in the eastern central Pacific Ocean and a negative Pacific decadal oscillation pattern in the North Pacific had the largest impacts on the global sea surface temperature in 2013. The North Pacific reached a historic high temperature in 2013 and on balance the globally-averaged sea surface temperature was among the 10 highest on record. Overall, the salt content in nearsurface ocean waters increased while in intermediate waters it decreased. Global mean sea level continued to rise during 2013, on pace with a trend of 3.2 mm yr-1 over the past two decades. A portion of this trend (0.5 mm yr-1) has been attributed to natural variability associated with the Pacific decadal oscillation as well as to ongoing contributions from the melting of glaciers and ice sheets and ocean warming. Global tropical cyclone frequency during 2013 was slightly above average with a total of 94 storms, although the North Atlantic Basin had its quietest hurricane season since 1994. In the Western North Pacific Basin, Super Typhoon Haiyan, the deadliest tropical cyclone of 2013, had 1-minute sustained winds estimated to be 170 kt (87.5 m s-1) on 7 November, the highest wind speed ever assigned to a tropical cyclone. High storm surge was also associated with Haiyan as it made landfall over the central Philippines, an area where sea level is currently at historic highs, increasing by 200 mm since 1970. In the atmosphere, carbon dioxide, methane, and nitrous oxide all continued to increase in 2013. As in previous years, each of these major greenhouse gases once again reached historic high concentrations. In the Arctic, carbon dioxide and methane increased at the same rate as the global increase. These increases are likely due to export from lower latitudes rather than a consequence of increases in Arctic sources, such as thawing permafrost. At Mauna Loa, Hawaii, for the first time since measurements began in 1958, the daily average mixing ratio of carbon dioxide exceeded 400 ppm on 9 May. The state of these variables, along with dozens of others, and the 2013 climate conditions of regions around the world are discussed in further detail in this 24th edition of the State of the Climate series. © 2014, American Meteorological Society. All rights reserved

    Multiorgan MRI findings after hospitalisation with COVID-19 in the UK (C-MORE): a prospective, multicentre, observational cohort study

    Get PDF
    Introduction: The multiorgan impact of moderate to severe coronavirus infections in the post-acute phase is still poorly understood. We aimed to evaluate the excess burden of multiorgan abnormalities after hospitalisation with COVID-19, evaluate their determinants, and explore associations with patient-related outcome measures. Methods: In a prospective, UK-wide, multicentre MRI follow-up study (C-MORE), adults (aged ≥18 years) discharged from hospital following COVID-19 who were included in Tier 2 of the Post-hospitalisation COVID-19 study (PHOSP-COVID) and contemporary controls with no evidence of previous COVID-19 (SARS-CoV-2 nucleocapsid antibody negative) underwent multiorgan MRI (lungs, heart, brain, liver, and kidneys) with quantitative and qualitative assessment of images and clinical adjudication when relevant. Individuals with end-stage renal failure or contraindications to MRI were excluded. Participants also underwent detailed recording of symptoms, and physiological and biochemical tests. The primary outcome was the excess burden of multiorgan abnormalities (two or more organs) relative to controls, with further adjustments for potential confounders. The C-MORE study is ongoing and is registered with ClinicalTrials.gov, NCT04510025. Findings: Of 2710 participants in Tier 2 of PHOSP-COVID, 531 were recruited across 13 UK-wide C-MORE sites. After exclusions, 259 C-MORE patients (mean age 57 years [SD 12]; 158 [61%] male and 101 [39%] female) who were discharged from hospital with PCR-confirmed or clinically diagnosed COVID-19 between March 1, 2020, and Nov 1, 2021, and 52 non-COVID-19 controls from the community (mean age 49 years [SD 14]; 30 [58%] male and 22 [42%] female) were included in the analysis. Patients were assessed at a median of 5·0 months (IQR 4·2–6·3) after hospital discharge. Compared with non-COVID-19 controls, patients were older, living with more obesity, and had more comorbidities. Multiorgan abnormalities on MRI were more frequent in patients than in controls (157 [61%] of 259 vs 14 [27%] of 52; p&lt;0·0001) and independently associated with COVID-19 status (odds ratio [OR] 2·9 [95% CI 1·5–5·8]; padjusted=0·0023) after adjusting for relevant confounders. Compared with controls, patients were more likely to have MRI evidence of lung abnormalities (p=0·0001; parenchymal abnormalities), brain abnormalities (p&lt;0·0001; more white matter hyperintensities and regional brain volume reduction), and kidney abnormalities (p=0·014; lower medullary T1 and loss of corticomedullary differentiation), whereas cardiac and liver MRI abnormalities were similar between patients and controls. Patients with multiorgan abnormalities were older (difference in mean age 7 years [95% CI 4–10]; mean age of 59·8 years [SD 11·7] with multiorgan abnormalities vs mean age of 52·8 years [11·9] without multiorgan abnormalities; p&lt;0·0001), more likely to have three or more comorbidities (OR 2·47 [1·32–4·82]; padjusted=0·0059), and more likely to have a more severe acute infection (acute CRP &gt;5mg/L, OR 3·55 [1·23–11·88]; padjusted=0·025) than those without multiorgan abnormalities. Presence of lung MRI abnormalities was associated with a two-fold higher risk of chest tightness, and multiorgan MRI abnormalities were associated with severe and very severe persistent physical and mental health impairment (PHOSP-COVID symptom clusters) after hospitalisation. Interpretation: After hospitalisation for COVID-19, people are at risk of multiorgan abnormalities in the medium term. Our findings emphasise the need for proactive multidisciplinary care pathways, with the potential for imaging to guide surveillance frequency and therapeutic stratification

    Cognitive and psychiatric symptom trajectories 2–3 years after hospital admission for COVID-19: a longitudinal, prospective cohort study in the UK

    Get PDF
    Background COVID-19 is known to be associated with increased risks of cognitive and psychiatric outcomes after the acute phase of disease. We aimed to assess whether these symptoms can emerge or persist more than 1 year after hospitalisation for COVID-19, to identify which early aspects of COVID-19 illness predict longer-term symptoms, and to establish how these symptoms relate to occupational functioning. Methods The Post-hospitalisation COVID-19 study (PHOSP-COVID) is a prospective, longitudinal cohort study of adults (aged ≥18 years) who were hospitalised with a clinical diagnosis of COVID-19 at participating National Health Service hospitals across the UK. In the C-Fog study, a subset of PHOSP-COVID participants who consented to be recontacted for other research were invited to complete a computerised cognitive assessment and clinical scales between 2 years and 3 years after hospital admission. Participants completed eight cognitive tasks, covering eight cognitive domains, from the Cognitron battery, in addition to the 9-item Patient Health Questionnaire for depression, the Generalised Anxiety Disorder 7-item scale, the Functional Assessment of Chronic Illness Therapy Fatigue Scale, and the 20-item Cognitive Change Index (CCI-20) questionnaire to assess subjective cognitive decline. We evaluated how the absolute risks of symptoms evolved between follow-ups at 6 months, 12 months, and 2–3 years, and whether symptoms at 2–3 years were predicted by earlier aspects of COVID-19 illness. Participants completed an occupation change questionnaire to establish whether their occupation or working status had changed and, if so, why. We assessed which symptoms at 2–3 years were associated with occupation change. People with lived experience were involved in the study. Findings 2469 PHOSP-COVID participants were invited to participate in the C-Fog study, and 475 participants (191 [40·2%] females and 284 [59·8%] males; mean age 58·26 [SD 11·13] years) who were discharged from one of 83 hospitals provided data at the 2–3-year follow-up. Participants had worse cognitive scores than would be expected on the basis of their sociodemographic characteristics across all cognitive domains tested (average score 0·71 SD below the mean [IQR 0·16–1·04]; p<0·0001). Most participants reported at least mild depression (263 [74·5%] of 353), anxiety (189 [53·5%] of 353), fatigue (220 [62·3%] of 353), or subjective cognitive decline (184 [52·1%] of 353), and more than a fifth reported severe depression (79 [22·4%] of 353), fatigue (87 [24·6%] of 353), or subjective cognitive decline (88 [24·9%] of 353). Depression, anxiety, and fatigue were worse at 2–3 years than at 6 months or 12 months, with evidence of both worsening of existing symptoms and emergence of new symptoms. Symptoms at 2–3 years were not predicted by the severity of acute COVID-19 illness, but were strongly predicted by the degree of recovery at 6 months (explaining 35·0–48·8% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); by a biocognitive profile linking acutely raised D-dimer relative to C-reactive protein with subjective cognitive deficits at 6 months (explaining 7·0–17·2% of the variance in anxiety, depression, fatigue, and subjective cognitive decline); and by anxiety, depression, fatigue, and subjective cognitive deficit at 6 months. Objective cognitive deficits at 2–3 years were not predicted by any of the factors tested, except for cognitive deficits at 6 months, explaining 10·6% of their variance. 95 of 353 participants (26·9% [95% CI 22·6–31·8]) reported occupational change, with poor health being the most common reason for this change. Occupation change was strongly and specifically associated with objective cognitive deficits (odds ratio [OR] 1·51 [95% CI 1·04–2·22] for every SD decrease in overall cognitive score) and subjective cognitive decline (OR 1·54 [1·21–1·98] for every point increase in CCI-20). Interpretation Psychiatric and cognitive symptoms appear to increase over the first 2–3 years post-hospitalisation due to both worsening of symptoms already present at 6 months and emergence of new symptoms. New symptoms occur mostly in people with other symptoms already present at 6 months. Early identification and management of symptoms might therefore be an effective strategy to prevent later onset of a complex syndrome. Occupation change is common and associated mainly with objective and subjective cognitive deficits. Interventions to promote cognitive recovery or to prevent cognitive decline are therefore needed to limit the functional and economic impacts of COVID-19. Funding National Institute for Health and Care Research Oxford Health Biomedical Research Centre, Wolfson Foundation, MQ Mental Health Research, MRC-UK Research and Innovation, and National Institute for Health and Care Research
    corecore