893 research outputs found

    CARETS: A prototype regional environmental information system. Volume 2, parts A and B: Norfolk and environs; a land use perspective

    Get PDF
    The author has identified the following significant results. The Norfolk-Portsmouth metropolitan statistical area in southeastern Virginia was the site of intensive testing of a number of land resources assessment methods. Land use and land cover data at three levels of detail were derived by manual image interpretation from both aircraft and satellite sources and used to characterize the 1,766 sq km (682 sq mi) area from the perspective of its various resource-related activities and problems. Measurements at level 1 from 1:100, 000 scale maps revealed 42 percent of the test area (excluding bays and estuaries) to be forest, 28 percent agriculture, 23 percent urban and built-up, 4 percent nonforested wetlands, and 2 percent water. At the same scale and level of detail, 10 percent of the area underwent change from one land use category to another in the period 1959-70, 62 percent of which involved the relatively irreversible change from forest or agriculture to urban uses

    Coupling Transcriptional State to Large-Scale Repeat Expansions in Yeast

    Get PDF
    SummaryExpansions of simple DNA repeats cause numerous hereditary disorders in humans. Replication, repair, and transcription are implicated in the expansion process, but their relative contributions are yet to be distinguished. To separate the roles of replication and transcription in the expansion of Friedreich’s ataxia (GAA)n repeats, we designed two yeast genetic systems that utilize a galactose-inducible GAL1 promoter but contain these repeats in either the transcribed or nontranscribed region of a selectable cassette. We found that large-scale repeat expansions can occur in the lack of transcription. Induction of transcription strongly elevated the rate of expansions in both systems, indicating that active transcriptional state rather than transcription through the repeat per se affects this process. Furthermore, replication defects increased the rate of repeat expansions irrespective of transcriptional state. We present a model in which transcriptional state, linked to the nucleosomal density of a region, acts as a modulator of large-scale repeat expansions

    Shared Control Individuals in Health Policy Evaluations with Application to Medical Cannabis Laws

    Full text link
    Health policy researchers often have questions about the effects of a policy implemented at some cluster-level unit, e.g., states, counties, hospitals, etc. on individual-level outcomes collected over multiple time periods. Stacked difference-in-differences is an increasingly popular way to estimate these effects. This approach involves estimating treatment effects for each policy-implementing unit, then, if scientifically appropriate, aggregating them to an average effect estimate. However, when individual-level data are available and non-implementing units are used as comparators for multiple policy-implementing units, data from untreated individuals may be used across multiple analyses, thereby inducing correlation between effect estimates. Existing methods do not quantify or account for this sharing of controls. Here, we describe a stacked difference-in-differences study investigating the effects of state medical cannabis laws on treatment for chronic pain management that motivated this work, discuss a framework for estimating and managing this correlation due to shared control individuals, and show how accounting for it affects the substantive results

    Modelling chemistry and biology after implantation of a drug-eluting stent. Part I: Drug transport

    Get PDF
    Drug-eluting stents have been used widely to prevent restenosis of arteries following percutaneous balloon angioplasty. Mathematical modelling plays an important role in optimising the design of these stents to maximise their efficiency. When designing a drug-eluting stent system, we expect to have a sufficient amount of drug being released into the artery wall for a sufficient period to prevent restenosis. In this paper, a simple model is considered to provide an elementary description of drug release into artery tissue from an implanted stent. From the model, we identified a parameter regime to optimise the system when preparing the polymer coating. The model provides some useful order of magnitude estimates for the key quantities of interest. From the model, we can identify the time scales over which the drug traverses the artery wall and empties from the polymer coating, as well as obtain approximate formulae for the total amount of drug in the artery tissue and the fraction of drug that has released from the polymer. The model was evaluated by comparing to in-vivo experimental data and good agreement was found

    Visualising apoptosis in live zebrafish using fluorescence lifetime imaging with optical projection tomography to map FRET biosensor activity in space and time

    Get PDF
    Fluorescence lifetime imaging (FLIM) combined with optical projection tomography (OPT) has the potential to map Förster resonant energy transfer (FRET) readouts in space and time in intact transparent or near transparent live organisms such as zebrafish larvae, thereby providing a means to visualise cell signalling processes in their physiological context. Here the first application of FLIM OPT to read out biological function in live transgenic zebrafish larvae using a genetically expressed FRET biosensor is reported. Apoptosis, or programmed cell death, is mapped in 3-D by imaging the activity of a FRET biosensor that is cleaved by Caspase 3, which is a key effector of apoptosis. Although apoptosis is a naturally occurring process during development, it can also be triggered in a variety of ways, including through gamma irradiation. FLIM OPT is shown here to enable apoptosis to be monitored over time, in live zebrafish larvae via changes in Caspase 3 activation following gamma irradiation at 24 hours post fertilisation. Significant apoptosis was observed at 3.5 hours post irradiation, predominantly in the head region

    Dynamics of Sleep-Wake Transitions During Sleep

    Full text link
    We study the dynamics of the awakening during the night for healthy subjects and find that the wake and the sleep periods exhibit completely different behavior: the durations of wake periods are characterized by a scale-free power-law distribution, while the durations of sleep periods have an exponential distribution with a characteristic time scale. We find that the characteristic time scale of sleep periods changes throughout the night. In contrast, there is no measurable variation in the power-law behavior for the durations of wake periods. We develop a stochastic model which agrees with the data and suggests that the difference in the dynamics of sleep and wake states arises from the constraints on the number of microstates in the sleep-wake system.Comment: Final form with some small corrections. To be published in Europhysics Letters, vol. 57, issue no. 5, 1 March 2002, pp. 625-63

    In-line monitoring of particle size and shape from image-based measurements

    Get PDF
    Within the pharmaceutical industry, particle size and shape distributions are crucial properties of crystalline particles produced in crystallisation processes. They determine the success or otherwise of processes such as granulation, suspension treatment and drying, all involved in the manufacture of the final pharmaceutical product. Some properties of the final pharmaceutical product such as dissolution behaviour are also influenced by the particle size and shape distribution of its ingredients. Therefore, crystallisation processes need to be controlled in order to produce particles with the desired attributes (size and shape). This in turn requires an accurate characterisation of the particle attributes during the crystallisation processes. Traditionally, particle size and shape are determined by means of off-line measurements. However, these techniques only provide information on the final state of the process and involve intermediate processing steps (e.g. sampling, dissolution, drying) that can alter the properties of the particles before the measurement. In recent years, a range of in-line techniques has been developed to obtain in-situ and real-time information on the state of the process in a non-disruptive manner

    In vivo fluorescence lifetime tomography of a FRET probe expressed in mouse

    Get PDF
    Förster resonance energy transfer (FRET) is a powerful biological tool for reading out cell signaling processes. In vivo use of FRET is challenging because of the scattering properties of bulk tissue. By combining diffuse fluorescence tomography with fluorescence lifetime imaging (FLIM), implemented using wide-field time-gated detection of fluorescence excited by ultrashort laser pulses in a tomographic imaging system and applying inverse scattering algorithms, we can reconstruct the three dimensional spatial localization of fluorescence quantum efficiency and lifetime. We demonstrate in vivo spatial mapping of FRET between genetically expressed fluorescent proteins in live mice read out using FLIM. Following transfection by electroporation, mouse hind leg muscles were imaged in vivo and the emission of free donor (eGFP) in the presence of free acceptor (mCherry) could be clearly distinguished from the fluorescence of the donor when directly linked to the acceptor in a tandem (eGFP-mCherry) FRET construct
    corecore