5,371 research outputs found

    Cosmic microwave background multipole alignments in slab topologies

    Get PDF
    Several analyses of the microwave sky maps from the Wilkinson Microwave Anisotropy Probe (WMAP) have drawn attention to alignments amongst the low-order multipoles. Amongst the various possible explanations, an effect of cosmic topology has been invoked by several authors. We focus on an alignment of the first four multipoles (\ell = 2 to 5) found by Land and Magueijo (2005), and investigate the distribution of their alignment statistic for a set of simulated cosmic microwave background maps for cosmologies with slab-like topology. We find that this topology does offer a modest increase in the probability of the observed value, but that even for the smallest topology considered the probability of the observed value remains below one percent.Comment: 6 pages RevTex with 6 figures included. Minor changes to match version accepted as Physical Review D Rapid Communicatio

    Extending electron orbital precession to the molecular case: Can orbital alignment be used to observe wavepacket dynamics?

    Full text link
    The complexity of ultrafast molecular photoionization presents an obstacle to the modelling of pump-probe experiments. Here, a simple optimized model of atomic rubidium is combined with a molecular dynamics model to predict quantitatively the results of a pump-probe experiment in which long range rubidium dimers are first excited, then ionized after a variable delay. The method is illustrated by the outline of two proposed feasible experiments and the calculation of their outcomes. Both of these proposals use Feshbach 87Rb2 molecules. We show that long-range molecular pump-probe experiments should observe spin-orbit precession given a suitable pump-pulse, and that the associated high-frequency beat signal in the ionization probability decays after a few tens of picoseconds. If the molecule was to be excited to only a single fine structure state state, then a low-frequency oscillation in the internuclear separation would be detectable through the timedependent ionization cross section, giving a mechanism that would enable observation of coherent vibrational motion in this molecule.Comment: 9 pages, 10 figures, PRA submissio

    Why are some people with neurological illness more resilient than others?

    Full text link
    The current qualitative study was designed to evaluate the coping strategies of people living with a chronic progressive neurological illness and their carers. The neurological illnesses were Huntington&rsquo;s disease, motor neurone disease, multiple sclerosis and Parkinson&rsquo;s disease. Participants included 15 people who showed high levels of adjustment and 15 who showed low levels of adjustment. Participants were selected from an earlier study, to ensure that they satisfied the inclusion criteria for the current study. Interviews were completed to determine the strategies used to cope with the demands of the illness. Participants who demonstrated good adjustment were more likely to draw on social support to provide them with the resources to deal with the illness. In contrast, those who evidenced poor adjustment were more likely to draw on external supports to complete tasks for them. The implications of these findings for people with chronic neurological illnesses and their families are discussed.<br /

    Partial Evaluation for Java Malware Detection

    Get PDF
    The fact that Java is platform independent gives hackers the opportunity to write exploits that can target users on any platform, which has a JVM implementation. Metasploit is a well-known source of Java exploits and to circumvent detection by Anti Virus (AV) software, obfuscation techniques are routinely applied to make an exploit more difficult to recognise. Popular obfuscation techniques for Java include string obfuscation and applying reflection to hide method calls; two techniques that can either be used together or independently. This paper shows how to apply partial evaluation to remove these obfuscations and thereby improve AV matching. The paper presents a partial evaluator for Jimple, which is a typed three-address code suitable for optimisation and program analysis, and also demonstrates how the residual Jimple code, when transformed back into Java, improves the detection rates of a number of commercial AV products

    The non-unique Universe

    Get PDF
    The purpose of this paper is to elucidate, by means of concepts and theorems drawn from mathematical logic, the conditions under which the existence of a multiverse is a logical necessity in mathematical physics, and the implications of Godel's incompleteness theorem for theories of everything. Three conclusions are obtained in the final section: (i) the theory of the structure of our universe might be an undecidable theory, and this constitutes a potential epistemological limit for mathematical physics, but because such a theory must be complete, there is no ontological barrier to the existence of a final theory of everything; (ii) in terms of mathematical logic, there are two different types of multiverse: classes of non-isomorphic but elementarily equivalent models, and classes of model which are both non-isomorphic and elementarily inequivalent; (iii) for a hypothetical theory of everything to have only one possible model, and to thereby negate the possible existence of a multiverse, that theory must be such that it admits only a finite model

    NICMOS Images of the GG Tau Circumbinary Disk

    Full text link
    We present deep, near-infrared images of the circumbinary disk surrounding the pre-main-sequence binary star, GG Tau A, obtained with NICMOS aboard the Hubble Space Telescope. The spatially resolved proto-planetary disk scatters roughly 1.5% of the stellar flux, with a near-to-far side flux ratio of ~1.4, independent of wavelength, and colors that are comparable to the central source; all of these properties are significantly different from the earlier ground-based observations. New Monte Carlo scattering simulations of the disk emphasize that the general properties of the disk, such as disk flux, near side to far side flux ratio and integrated colors, can be approximately reproduced using ISM-like dust grains, without the presence of either circumstellar disks or large dust grains, as had previously been suggested. A single parameter phase function is fitted to the observed azimuthal variation in disk flux, providing a lower limit on the median grain size of 0.23 micron. Our analysis, in comparison to previous simulations, shows that the major limitation to the study of grain growth in T Tauri disk systems through scattered light lies in the uncertain ISM dust grain properties. Finally, we use the 9 year baseline of astrometric measurements of the binary to solve the complete orbit, assuming that the binary is coplanar with the circumbinary ring. We find that the estimated 1 sigma range on disk inner edge to semi-major axis ratio, 3.2 < Rin/a < 6.7, is larger than that estimated by previous SPH simulations of binary-disk interactions.Comment: 40 pages, 8 postscript figures, accepted for publication in Ap

    FAST: A multi-processed environment for visualization of computational fluid dynamics

    Get PDF
    Three-dimensional, unsteady, multi-zoned fluid dynamics simulations over full scale aircraft are typical of the problems being investigated at NASA Ames' Numerical Aerodynamic Simulation (NAS) facility on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10-30 Mflop range, we feel that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These larger, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this writing. The visualization techniques will change as the supercomputing environment, and hence the scientific methods employed, evolves even further. The Flow Analysis Software Toolkit (FAST), an implementation of a software system for fluid mechanics analysis, is discussed

    FAST: A multi-processed environment for visualization of computational fluid

    Get PDF
    Three dimensional, unsteady, multizoned fluid dynamics simulations over full scale aircraft is typical of problems being computed at NASA-Ames on CRAY2 and CRAY-YMP supercomputers. With multiple processor workstations available in the 10 to 30 Mflop range, it is felt that these new developments in scientific computing warrant a new approach to the design and implementation of analysis tools. These large, more complex problems create a need for new visualization techniques not possible with the existing software or systems available as of this time. These visualization techniques will change as the supercomputing environment, and hence the scientific methods used, evolve ever further. Visualization of computational aerodynamics require flexible, extensible, and adaptable software tools for performing analysis tasks. FAST (Flow Analysis Software Toolkit), an implementation of a software system for fluid mechanics analysis that is based on this approach is discussed
    • …
    corecore