642 research outputs found

    Single Cell Transcriptome Data Analysis Defines the Heterogeneity of Peripheral Nerve Cells in Homeostasis and Regeneration

    Get PDF
    The advances in single-cell RNA sequencing technologies and the development of bioinformatics pipelines enable us to more accurately define the heterogeneity of cell types in a selected tissue. In this report, we re-analyzed recently published single-cell RNA sequencing data sets and provide a rationale to redefine the heterogeneity of cells in both intact and injured mouse peripheral nerves. Our analysis showed that, in both intact and injured peripheral nerves, cells could be functionally classified into four categories: Schwann cells, nerve fibroblasts, immune cells, and cells associated with blood vessels. Nerve fibroblasts could be sub-clustered into epineurial, perineurial, and endoneurial fibroblasts. Identified immune cell clusters include macrophages, mast cells, natural killer cells, T and B lymphocytes as well as an unreported cluster of neutrophils. Cells associated with blood vessels include endothelial cells, vascular smooth muscle cells, and pericytes. We show that endothelial cells in the intact mouse sciatic nerve have three sub-types: epineurial, endoneurial, and lymphatic endothelial cells. Analysis of cell type-specific gene changes revealed that Schwann cells and endoneurial fibroblasts are the two most important cell types promoting peripheral nerve regeneration. Analysis of communication between these cells identified potential signals for early blood vessel regeneration, neutrophil recruitment of macrophages, and macrophages activating Schwann cells. Through this analysis, we also report appropriate marker genes for future single cell transcriptome data analysis to identify cell types in intact and injured peripheral nerves. The findings from our analysis could facilitate a better understanding of cell biology of peripheral nerves in homeostasis, regeneration, and disease.</jats:p

    Beyond element-wise interactions: identifying complex interactions in biological processes

    Get PDF
    Background: Biological processes typically involve the interactions of a number of elements (genes, cells) acting on each others. Such processes are often modelled as networks whose nodes are the elements in question and edges pairwise relations between them (transcription, inhibition). But more often than not, elements actually work cooperatively or competitively to achieve a task. Or an element can act on the interaction between two others, as in the case of an enzyme controlling a reaction rate. We call “complex” these types of interaction and propose ways to identify them from time-series observations. Methodology: We use Granger Causality, a measure of the interaction between two signals, to characterize the influence of an enzyme on a reaction rate. We extend its traditional formulation to the case of multi-dimensional signals in order to capture group interactions, and not only element interactions. Our method is extensively tested on simulated data and applied to three biological datasets: microarray data of the Saccharomyces cerevisiae yeast, local field potential recordings of two brain areas and a metabolic reaction. Conclusions: Our results demonstrate that complex Granger causality can reveal new types of relation between signals and is particularly suited to biological data. Our approach raises some fundamental issues of the systems biology approach since finding all complex causalities (interactions) is an NP hard problem

    A pilot randomised double blind controlled trial of the efficacy of purified fatty acids for the treatment of women with endometriosis-associated pain (PurFECT):study protocol

    Get PDF
    Abstract Background Endometriosis affects 6–10% of women and is associated with debilitating pelvic pain. It costs the UK > £2.8 billion per year in loss of productivity. Endometriosis can be managed by surgical excision or medically by ovarian suppression. However, ~ 75% symptoms recur after surgery and available medical treatments have undesirable side effects and are contraceptive. Omega-3 purified fatty acids (PUFA) have been shown in animal models to reduce factors that are thought to lead to endometriosis-associated pain, have minimal side effects, and no effects on fertility. This paper presents a protocol for a two-arm, pilot parallel randomised controlled trial (RCT) which aims to inform the planning of a future multicentre trial to evaluate the efficacy of Omega-3 PUFA in the management of endometriosis-associated pain in women. Methods The study will recruit women with endometriosis over a 12-month period in the National Health Service (NHS) Lothian, UK, and randomise them to 8 weeks of treatment with Omega-3 PUFA or comparator (olive oil). The primary objective is to assess recruitment and retention rates. The secondary objectives are to determine the effectiveness/acceptability to participants of the proposed methods of recruitment/randomisation/treatments/questionnaires, to inform the sample size calculation and to refine the research methodology for a future large randomised controlled trial. Response to treatment will be monitored by pain scores and questionnaires assessing physical and emotional function compared at baseline and 8 weeks. Discussion We recognise that there may be potential difficulties in mounting a large randomised controlled trial for endometriosis to assess Omega-3 PUFA because they are a dietary supplement readily available over the counter and already used by women with endometriosis. We have therefore designed this pilot study to assess practical feasibility and following the ‘Initiative on Methods, Measurement, and Pain Assessment in Clinical Trials’ recommendations for the design of chronic pain trials. Trial registration ISRCTN4420234

    Artificial Neural Network Inference (ANNI): A Study on Gene-Gene Interaction for Biomarkers in Childhood Sarcomas

    Get PDF
    Objective: To model the potential interaction between previously identified biomarkers in children sarcomas using artificial neural network inference (ANNI). Method: To concisely demonstrate the biological interactions between correlated genes in an interaction network map, only 2 types of sarcomas in the children small round blue cell tumors (SRBCTs) dataset are discussed in this paper. A backpropagation neural network was used to model the potential interaction between genes. The prediction weights and signal directions were used to model the strengths of the interaction signals and the direction of the interaction link between genes. The ANN model was validated using Monte Carlo cross-validation to minimize the risk of over-fitting and to optimize generalization ability of the model. Results: Strong connection links on certain genes (TNNT1 and FNDC5 in rhabdomyosarcoma (RMS); FCGRT and OLFM1 in Ewing’s sarcoma (EWS)) suggested their potency as central hubs in the interconnection of genes with different functionalities. The results showed that the RMS patients in this dataset are likely to be congenital and at low risk of cardiomyopathy development. The EWS patients are likely to be complicated by EWS-FLI fusion and deficiency in various signaling pathways, including Wnt, Fas/Rho and intracellular oxygen. Conclusions: The ANN network inference approach and the examination of identified genes in the published literature within the context of the disease highlights the substantial influence of certain genes in sarcomas

    A systematic review of the evidence for single stage and two stage revision of infected knee replacement

    Get PDF
    BACKGROUND: Periprosthetic infection about the knee is a devastating complication that may affect between 1% and 5% of knee replacement. With over 79 000 knee replacements being implanted each year in the UK, periprosthetic infection (PJI) is set to become an important burden of disease and cost to the healthcare economy. One of the important controversies in treatment of PJI is whether a single stage revision operation is superior to a two-stage procedure. This study sought to systematically evaluate the published evidence to determine which technique had lowest reinfection rates. METHODS: A systematic review of the literature was undertaken using the MEDLINE and EMBASE databases with the aim to identify existing studies that present the outcomes of each surgical technique. Reinfection rate was the primary outcome measure. Studies of specific subsets of patients such as resistant organisms were excluded. RESULTS: 63 studies were identified that met the inclusion criteria. The majority of which (58) were reports of two-stage revision. Reinfection rated varied between 0% and 41% in two-stage studies, and 0% and 11% in single stage studies. No clinical trials were identified and the majority of studies were observational studies. CONCLUSIONS: Evidence for both one-stage and two-stage revision is largely of low quality. The evidence basis for two-stage revision is significantly larger, and further work into direct comparison between the two techniques should be undertaken as a priority

    Evaluating the effects of catch-and-release angling on Cape stumpnose Rhabdosargus holubi in a South African estuary

    Get PDF
    Fisheries managers are increasingly promoting catch and release (C&R) as a means to manage recreational fish stocks. Several commonly used output regulations, including bag and size limits, require the mandatory release of captured fishes by anglers. In addition to mandatory C&R, conservation-conscious anglers have adopted voluntary C&R behaviour as a result of the noticeable declines in the populations of many fishery species and this behaviour is becoming increasingly popular among recreational anglers (Cooke et al. 2013a). The combination of mandatory and voluntary C&R behaviour is substantial, as Raby et al. (2014) estimated that 60% of fish captured in global recreational fisheries are released. In South Africa, Cowley et al. (2013) found that a large proportion (mean 74% [SD 7.3]) of the five most-dominant fishery species captured in the Sundays Estuary recreational fishery were released

    Upper atmospheres and ionospheres of planets and satellites

    Full text link
    The upper atmospheres of the planets and their satellites are more directly exposed to sunlight and solar wind particles than the surface or the deeper atmospheric layers. At the altitudes where the associated energy is deposited, the atmospheres may become ionized and are referred to as ionospheres. The details of the photon and particle interactions with the upper atmosphere depend strongly on whether the object has anintrinsic magnetic field that may channel the precipitating particles into the atmosphere or drive the atmospheric gas out to space. Important implications of these interactions include atmospheric loss over diverse timescales, photochemistry and the formation of aerosols, which affect the evolution, composition and remote sensing of the planets (satellites). The upper atmosphere connects the planet (satellite) bulk composition to the near-planet (-satellite) environment. Understanding the relevant physics and chemistry provides insight to the past and future conditions of these objects, which is critical for understanding their evolution. This chapter introduces the basic concepts of upper atmospheres and ionospheres in our solar system, and discusses aspects of their neutral and ion composition, wind dynamics and energy budget. This knowledge is key to putting in context the observations of upper atmospheres and haze on exoplanets, and to devise a theory that explains exoplanet demographics.Comment: Invited Revie

    The reactive metabolite target protein database (TPDB) – a web-accessible resource

    Get PDF
    BACKGROUND: The toxic effects of many simple organic compounds stem from their biotransformation to chemically reactive metabolites which bind covalently to cellular proteins. To understand the mechanisms of cytotoxic responses it may be important to know which proteins become adducted and whether some may be common targets of multiple toxins. The literature of this field is widely scattered but expanding rapidly, suggesting the need for a comprehensive, searchable database of reactive metabolite target proteins. DESCRIPTION: The Reactive Metabolite Target Protein Database (TPDB) is a comprehensive, curated, searchable, documented compilation of publicly available information on the protein targets of reactive metabolites of 18 well-studied chemicals and drugs of known toxicity. TPDB software enables i) string searches for author names and proteins names/synonyms, ii) more complex searches by selecting chemical compound, animal species, target tissue and protein names/synonyms from pull-down menus, and iii) commonality searches over multiple chemicals. Tabulated search results provide information, references and links to other databases. CONCLUSION: The TPDB is a unique on-line compilation of information on the covalent modification of cellular proteins by reactive metabolites of chemicals and drugs. Its comprehensiveness and searchability should facilitate the elucidation of mechanisms of reactive metabolite toxicity. The database is freely available a

    How South Pacific mangroves may respond to predicted climate change and sea level rise

    Get PDF
    In the Pacific islands the total mangrove area is about 343,735 ha, with largest areas in Papua New Guinea, Solomon Islands, Fiji and New Caledonia. A total of 34 species of mangroves occur, as well as 3 hybrids. These are of the Indo-Malayan assemblage (with one exception), and decline in diversity from west to east across the Pacific, reaching a limit at American Samoa. Mangrove resources are traditionally exploited in the Pacific islands, for construction and fuel wood, herbal medicines, and the gathering of crabs and fish. There are two main environmental settings for mangroves in the Pacific, deltaic and estuarine mangroves of high islands, and embayment, lagoon and reef flat mangroves of low islands. It is indicated from past analogues that their close relationship with sea-level height renders these mangrove swamps particularly vulnerable to disruption by sea-level rise. Stratigraphic records of Pacific island mangrove ecosystems during sea-level changes of the Holocene Period demonstrate that low islands mangroves can keep up with a sea-level rise of up to 12 cm per 100 years. Mangroves of high islands can keep up with rates of sea-level rates of up to 45 cm per 100 years, according to the supply of fluvial sediment. When the rate of sea-level rise exceeds the rate of accretion, mangroves experience problems of substrate erosion, inundation stress and increased salinity. Rise in temperature and the direct effects of increased CO2 levels are likely to increase mangrove productivity, change phenological patterns (such as the timing of flowering and fruiting), and expand the ranges of mangroves into higher latitudes. Pacific island mangroves are expected to demonstrate a sensitive response to the predicted rise in sea-level. A regional monitoring system is needed to provide data on ecosystem changes in productivity, species composition and sedimentation. This has been the intention of a number of programs, but none has yet been implemented
    corecore