481 research outputs found

    Profiling Circulating and Urinary Bile Acids in Patients with Biliary Obstruction before and after Biliary Stenting

    Get PDF
    Bile acids are considered as extremely toxic at the high concentrations reached during bile duct obstruction, but each acid displays variable cytotoxic properties. This study investigates how biliary obstruction and restoration of bile flow interferes with urinary and circulating levels of 17 common bile acids. Bile acids (conjugated and unconjugated) were quantified by liquid chromatography coupled with tandem mass spectrometry in serum and urine samples from 17 patients (8 men and 9 women) with biliary obstruction, before and after biliary stenting. Results were compared with serum concentrations measured in 40 age- and sex-paired control donors (20 men and 20 women). The total circulating bile acid concentration increases from 2.7 µM in control donors to 156.9 µM in untreated patients with biliary stenosis. Serum taurocholic and glycocholic acids exhibit 304- and 241-fold accumulations in patients with biliary obstruction compared to controls. The enrichment in chenodeoxycholic acid species reached a maximum of only 39-fold, while all secondary and 6α-hydroxylated species –except taurolithocholic acids – were either unchanged or significantly reduced. Stenting was efficient in restoring an almost normal circulating profile and in reducing urinary bile acids

    A RhoA-FRET Biosensor Mouse for Intravital Imaging in Normal Tissue Homeostasis and Disease Contexts.

    Full text link
    The small GTPase RhoA is involved in a variety of fundamental processes in normal tissue. Spatiotemporal control of RhoA is thought to govern mechanosensing, growth, and motility of cells, while its deregulation is associated with disease development. Here, we describe the generation of a RhoA-fluorescence resonance energy transfer (FRET) biosensor mouse and its utility for monitoring real-time activity of RhoA in a variety of native tissues in vivo. We assess changes in RhoA activity during mechanosensing of osteocytes within the bone and during neutrophil migration. We also demonstrate spatiotemporal order of RhoA activity within crypt cells of the small intestine and during different stages of mammary gestation. Subsequently, we reveal co-option of RhoA activity in both invasive breast and pancreatic cancers, and we assess drug targeting in these disease settings, illustrating the potential for utilizing this mouse to study RhoA activity in vivo in real time

    Development of Sensory, Motor and Behavioral Deficits in the Murine Model of Sanfilippo Syndrome Type B

    Get PDF
    BACKGROUND: Mucopolysaccharidosis (MPS) IIIB (Sanfilippo Syndrome type B) is caused by a deficiency in the lysosomal enzyme N-acetyl-glucosaminidase (Naglu). Children with MPS IIIB develop disturbances of sleep, activity levels, coordination, vision, hearing, and mental functioning culminating in early death. The murine model of MPS IIIB demonstrates lysosomal distention in multiple tissues, a shortened life span, and behavioral changes. PRINCIPAL FINDINGS: To more thoroughly assess MPS IIIB in mice, alterations in circadian rhythm, activity level, motor function, vision, and hearing were tested. The suprachiasmatic nucleus (SCN) developed pathologic changes and locomotor analysis showed that MPS IIIB mice start their daily activity later and have a lower proportion of activity during the night than wild-type controls. Rotarod assessment of motor function revealed a progressive inability to coordinate movement in a rocking paradigm. Purkinje cell counts were significantly reduced in the MPS IIIB animals compared to age matched controls. By electroretinography (ERG), MPS IIIB mice had a progressive decrease in the amplitude of the dark-adapted b-wave response. Corresponding pathology revealed shortening of the outer segments, thinning of the outer nuclear layer, and inclusions in the retinal pigmented epithelium. Auditory-evoked brainstem responses (ABR) demonstrated progressive hearing deficits consistent with the observed loss of hair cells in the inner ear and histologic abnormalities in the middle ear. CONCLUSIONS/SIGNIFICANCE: The mouse model of MPS IIIB has several quantifiable phenotypic alterations and is similar to the human disease. These physiologic and histologic changes provide insights into the progression of this disease and will serve as important parameters when evaluating various therapies

    Genetic diversity of carotenoid-rich bananas evaluated by Diversity Arrays Technology (DArT)

    Get PDF
    The aim of this work was to evaluate the carotenoid content and genetic variability of banana accessions from the Musa germplasm collection held at Embrapa Cassava and Tropical Fruits, Brazil. Forty-two samples were analyzed, including 21 diploids, 19 triploids and two tetraploids. The carotenoid content was analyzed spectrophotometrically and genetic variability was estimated using 653 DArT markers. The average carotenoid content was 4.73 μg.g -1 , and ranged from 1.06 μg.g -1 for the triploid Nanica (Cavendish group) to 19.24 μg.g -1 for the triploid Saney. The diploids Modok Gier and NBA-14 and the triploid Saney had a carotenoid content that was, respectively, 7-fold, 6-fold and 9-fold greater than that of cultivars from the Cavendish group (2.19 μg.g -1). The mean similarity among the 42 accessions was 0.63 (range: 0.24 to 1.00). DArT analysis revealed extensive genetic variability in accessions from the Embrapa Musa germplasm bank

    Transient tissue priming via ROCK inhibition uncouples pancreatic cancer progression, sensitivity to chemotherapy, and metastasis.

    Full text link
    The emerging standard of care for patients with inoperable pancreatic cancer is a combination of cytotoxic drugs gemcitabine and Abraxane, but patient response remains moderate. Pancreatic cancer development and metastasis occur in complex settings, with reciprocal feedback from microenvironmental cues influencing both disease progression and drug response. Little is known about how sequential dual targeting of tumor tissue tension and vasculature before chemotherapy can affect tumor response. We used intravital imaging to assess how transient manipulation of the tumor tissue, or "priming," using the pharmaceutical Rho kinase inhibitor Fasudil affects response to chemotherapy. Intravital Förster resonance energy transfer imaging of a cyclin-dependent kinase 1 biosensor to monitor the efficacy of cytotoxic drugs revealed that priming improves pancreatic cancer response to gemcitabine/Abraxane at both primary and secondary sites. Transient priming also sensitized cells to shear stress and impaired colonization efficiency and fibrotic niche remodeling within the liver, three important features of cancer spread. Last, we demonstrate a graded response to priming in stratified patient-derived tumors, indicating that fine-tuned tissue manipulation before chemotherapy may offer opportunities in both primary and metastatic targeting of pancreatic cancer

    Quality control of B-lines analysis in stress Echo 2020

    Get PDF
    Background The effectiveness trial “Stress echo (SE) 2020” evaluates novel applications of SE in and beyond coronary artery disease. The core protocol also includes 4-site simplified scan of B-lines by lung ultrasound, useful to assess pulmonary congestion. Purpose To provide web-based upstream quality control and harmonization of B-lines reading criteria. Methods 60 readers (all previously accredited for regional wall motion, 53 B-lines naive) from 52 centers of 16 countries of SE 2020 network read a set of 20 lung ultrasound video-clips selected by the Pisa lab serving as reference standard, after taking an obligatory web-based learning 2-h module ( http://se2020.altervista.org ). Each test clip was scored for B-lines from 0 (black lung, A-lines, no B-lines) to 10 (white lung, coalescing B-lines). The diagnostic gold standard was the concordant assessment of two experienced readers of the Pisa lab. The answer of the reader was considered correct if concordant with reference standard reading ±1 (for instance, reference standard reading of 5 B-lines; correct answer 4, 5, or 6). The a priori determined pass threshold was 18/20 (≥ 90%) with R value (intra-class correlation coefficient) between reference standard and recruiting center) > 0.90. Inter-observer agreement was assessed with intra-class correlation coefficient statistics. Results All 60 readers were successfully accredited: 26 (43%) on first, 24 (40%) on second, and 10 (17%) on third attempt. The average diagnostic accuracy of the 60 accredited readers was 95%, with R value of 0.95 compared to reference standard reading. The 53 B-lines naive scored similarly to the 7 B-lines expert on first attempt (90 versus 95%, p = NS). Compared to the step-1 of quality control for regional wall motion abnormalities, the mean reading time per attempt was shorter (17 ± 3 vs 29 ± 12 min, p < .01), the first attempt success rate was higher (43 vs 28%, p < 0.01), and the drop-out of readers smaller (0 vs 28%, p < .01). Conclusions Web-based learning is highly effective for teaching and harmonizing B-lines reading. Echocardiographers without previous experience with B-lines learn quickly.info:eu-repo/semantics/publishedVersio

    Gene Expression Profiling and Molecular Characterization of Antimony Resistance in Leishmania amazonensis

    Get PDF
    Leishmania are unicellular microorganisms that can be transmitted to humans by the bite of sandflies. They cause a spectrum of diseases called leishmaniasis, which are classified as neglected tropical diseases by the World Health Organization. The treatment of leishmaniasis is based on the administration of antimony-containing drugs. These drugs have been used since 1947 and still constitute the mainstay for leishmaniasis treatment in several countries. One of the problems with these compounds is the emergence of resistance. Our work seeks to understand how these parasites become resistant to the drug. We studied antimony-resistant Leishmania amazonensis mutants. We analyzed gene expression at the whole genome level in antimony-resistant parasites and identified mechanisms used by Leishmania for resistance. This work could help us in developing new strategies for treatment in endemic countries where people are unresponsive to antimony-based chemotherapy. The identification of common mechanisms among different species of resistant parasites may also contribute to the development of diagnostic kits to identify and monitor the spread of resistance
    corecore