345 research outputs found

    Aquaporin-4 and brain edema.

    Get PDF
    Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in astrocyte foot processes at the borders between the brain parenchyma and major fluid compartments, including cerebrospinal fluid (CSF) and blood. This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma. Experiments using AQP4-null mice provide strong evidence for AQP4 involvement in cerebral water balance. AQP4-null mice are protected from cellular (cytotoxic) brain edema produced by water intoxication, brain ischemia, or meningitis. However, AQP4 deletion aggravates vasogenic (fluid leak) brain edema produced by tumor, cortical freeze, intraparenchymal fluid infusion, or brain abscess. In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma. AQP4 deletion also worsens obstructive hydrocephalus. Recently, AQP4 was also found to play a major role in processes unrelated to brain edema, including astrocyte migration and neuronal excitability. These findings suggest that modulation of AQP4 expression or function may be beneficial in several cerebral disorders, including hyponatremic brain edema, hydrocephalus, stroke, tumor, infection, epilepsy, and traumatic brain injury

    Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema

    Get PDF
    We investigated the in vivo effects of a novel aquaporin 4 (AQP4) inhibitor 2-(nicotinamide)-1,3,4-thiadiazole, TGN-020, in a mouse model of focal cerebral ischemia using 7.0-T magnetic resonance imaging (MRI). Pretreatment with TGN-020 significantly reduced brain edema associated with brain ischemia, as reflected by percentage of brain swelling volume (%BSV), 12.1Β Β±Β 6.3% in the treated group, compared to (20.8Β Β±Β 5.9%) in the control group (pΒ <Β 0.05), and in the size of cortical infarction as reflected by the percentage of hemispheric lesion volume (%HLV), 20.0Β Β±Β 7.6% in the treated group, compared to 30.0Β Β±Β 9.1% in the control group (pΒ <Β 0.05). The study indicated the potential pharmacological use of AQP4 inhibition in reducing brain edema associated with focal ischemia

    Electromagnetic Meson Production in the Nucleon Resonance Region

    Full text link
    Recent experimental and theoretical advances in investigating electromagnetic meson production reactions in the nucleon resonance region are reviewed.Comment: 75 pages, 42 figure

    Mechanics of the exceptional anuran ear

    Get PDF
    The anuran ear is frequently used for studying fundamental properties of vertebrate auditory systems. This is due to its unique anatomical features, most prominently the lack of a basilar membrane and the presence of two dedicated acoustic end organs, the basilar papilla and the amphibian papilla. Our current anatomical and functional knowledge implies that three distinct regions can be identified within these two organs. The basilar papilla functions as a single auditory filter. The low-frequency portion of the amphibian papilla is an electrically tuned, tonotopically organized auditory end organ. The high-frequency portion of the amphibian papilla is mechanically tuned and tonotopically organized, and it emits spontaneous otoacoustic emissions. This high-frequency portion of the amphibian papilla shows a remarkable, functional resemblance to the mammalian cochlea

    Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR

    Get PDF
    New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a quiescent state since at least early 2015, reactivated between 2017 March 19 and April 5. The radio flux density, while variable, is approximately 100x larger than during its dormant state. The X-ray flux one month after reactivation was at least 800x larger than during quiescence, and has been decaying exponentially on a 111+/-19 day timescale. This high-flux state, together with a radio-derived rotational ephemeris, enabled for the first time the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV pulsed fraction is comparable to the smallest observed for magnetars. The overall pulsar geometry inferred from polarized radio emission appears to be broadly consistent with that determined 6-8 years earlier. However, rotating vector model fits suggest that we are now seeing radio emission from a different location in the magnetosphere than previously. This indicates a novel way in which radio emission from magnetars can differ from that of ordinary pulsars. The torque on the neutron star is varying rapidly and unsteadily, as is common for magnetars following outburst, having changed by a factor of 7 within six months of reactivation.Comment: Published in ApJ (2018 April 5); 13 pages, 4 figure

    Crystal Structures of the FAK Kinase in Complex with TAE226 and Related Bis-Anilino Pyrimidine Inhibitors Reveal a Helical DFG Conformation

    Get PDF
    Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase required for cell migration, proliferation and survival. FAK overexpression has been documented in diverse human cancers and is associated with a poor clinical outcome. Recently, a novel bis-anilino pyrimidine inhibitor, TAE226, was reported to efficiently inhibit FAK signaling, arrest tumor growth and invasion and prolong the life of mice with glioma or ovarian tumor implants. Here we describe the crystal structures of the FAK kinase bound to TAE226 and three related bis-anilino pyrimidine compounds. TAE226 induces a conformation of the N-terminal portion of the kinase activation loop that is only observed in FAK, but is distinct from the conformation in both the active and inactive states of the kinase. This conformation appears to require a glycine immediately N-terminal to the β€œDFG motif”, which adopts a helical conformation stabilized by interactions with TAE226. The presence of a glycine residue in this position contributes to the specificity of TAE226 and related compounds for FAK. Our work highlights the fact that kinases can access conformational space that is not necessarily utilized for their native catalytic regulation, and that such conformations can explain and be exploited for inhibitor specificity

    A High Throughput Screen Identifies Chemical Modulators of the Laminin-Induced Clustering of Dystroglycan and Aquaporin-4 in Primary Astrocytes

    Get PDF
    Background: Aquaporin-4 (AQP4) constitutes the principal water channel in the brain and is clusteredat the perivascular astrocyte endfeet. This specific distribution of AQP4 plays a major role in maintaining water homeostasis in the brain. A growing body of evidence points to a role ofthe dystroglycan complex and its interaction with perivascular laminin in the clusteringof AQP4 atperivascular astrocyte endfeet. Indeed, mice lacking components of this complex or in which laminindystroglycan interaction is disrupted show a delayed onset of brain edema due to a redistribution of AQP4 away from astrocyte endfeet. It is therefore important to identify inhibitory drugs of laminin-dependent AQP4 clustering which may prevent or reduce brain edema. Methodolgy/Principal Findings: In the present study we used primary rat astrocyte cultures toscreen a library of.3,500 chemicals and identified 6 drugs that inhibit the laminin-induced clustering of dystroglycan and AQP4. Detailed analysis of the inhibitory drug, chloranil, revealed that its inhibition of the clustering is due to the metalloproteinase-2-mediated ß-dystroglycan shedding and subsequent loss of laminin interaction with dystroglycan. Furthermore, chemical variants of chloranil induced a similar effect on ß-dystroglycan and this was prevented by the antioxidant N-acetylcysteine. Conclusion/Significance: These findings reveal the mechanism of action of chloranil in preventing the laminin-induced clustering of dystroglycan and AQP4 and validate the use of high-throughput screening as a tool to identify drugs tha
    • …
    corecore