345 research outputs found
Aquaporin-4 and brain edema.
Aquaporin-4 (AQP4) is a water-channel protein expressed strongly in the brain, predominantly in astrocyte foot processes at the borders between the brain parenchyma and major fluid compartments, including cerebrospinal fluid (CSF) and blood. This distribution suggests that AQP4 controls water fluxes into and out of the brain parenchyma. Experiments using AQP4-null mice provide strong evidence for AQP4 involvement in cerebral water balance. AQP4-null mice are protected from cellular (cytotoxic) brain edema produced by water intoxication, brain ischemia, or meningitis. However, AQP4 deletion aggravates vasogenic (fluid leak) brain edema produced by tumor, cortical freeze, intraparenchymal fluid infusion, or brain abscess. In cytotoxic edema, AQP4 deletion slows the rate of water entry into brain, whereas in vasogenic edema, AQP4 deletion reduces the rate of water outflow from brain parenchyma. AQP4 deletion also worsens obstructive hydrocephalus. Recently, AQP4 was also found to play a major role in processes unrelated to brain edema, including astrocyte migration and neuronal excitability. These findings suggest that modulation of AQP4 expression or function may be beneficial in several cerebral disorders, including hyponatremic brain edema, hydrocephalus, stroke, tumor, infection, epilepsy, and traumatic brain injury
Recommended from our members
A video life-world approach to consultation practice: The relevance of a socio-phenomenological approach
This article discusses the [development and] use of a video life-world schema to explore alternative orientations to the shared health consultation. It is anticipated that this schema can be used by practitioners and consumers alike to understand the dynamics of videoed health consultations, the role of the participants within it and the potential to consciously alter the outcome by altering behaviour during the process of interaction. The study examines health consultation participation and develops an interpretative method of analysis that includes image elicitation (via videos), phenomenology (to identify the components of the analytic framework), narrative (to depict the stories of interactions) and a reflexive mode (to develop shared meaning through a conceptual framework for analysis). The analytic framework is derived from a life-world conception of human mutual shared interaction which is presented here as a novel approach to understanding patient-centred care. The video materials used in this study were derived from consultations in a Walk-in Centre (WiC) in East London. The conceptual framework produced through the process of video analysis is comprised of different combinations of movement, knowledge and emotional conversations that are used to classify objective or engaged WiC health care interactions. The videoed interactions organise along an active or passive, facilitative or directive typical situation continuum illustrating different kinds of textual approaches to practice that are in tension or harmony. The schema demonstrates how practitioners and consumers interact to produce these outcomes and indicates the potential for both consumers and practitioners to be educated to develop practice dynamics that support patient-centred care and impact on health outcomes
Pretreatment with a novel aquaporin 4 inhibitor, TGN-020, significantly reduces ischemic cerebral edema
We investigated the in vivo effects of a novel aquaporin 4 (AQP4) inhibitor 2-(nicotinamide)-1,3,4-thiadiazole, TGN-020, in a mouse model of focal cerebral ischemia using 7.0-T magnetic resonance imaging (MRI). Pretreatment with TGN-020 significantly reduced brain edema associated with brain ischemia, as reflected by percentage of brain swelling volume (%BSV), 12.1Β Β±Β 6.3% in the treated group, compared to (20.8Β Β±Β 5.9%) in the control group (pΒ <Β 0.05), and in the size of cortical infarction as reflected by the percentage of hemispheric lesion volume (%HLV), 20.0Β Β±Β 7.6% in the treated group, compared to 30.0Β Β±Β 9.1% in the control group (pΒ <Β 0.05). The study indicated the potential pharmacological use of AQP4 inhibition in reducing brain edema associated with focal ischemia
Electromagnetic Meson Production in the Nucleon Resonance Region
Recent experimental and theoretical advances in investigating electromagnetic
meson production reactions in the nucleon resonance region are reviewed.Comment: 75 pages, 42 figure
Mechanics of the exceptional anuran ear
The anuran ear is frequently used for studying fundamental properties of vertebrate auditory systems. This is due to its unique anatomical features, most prominently the lack of a basilar membrane and the presence of two dedicated acoustic end organs, the basilar papilla and the amphibian papilla. Our current anatomical and functional knowledge implies that three distinct regions can be identified within these two organs. The basilar papilla functions as a single auditory filter. The low-frequency portion of the amphibian papilla is an electrically tuned, tonotopically organized auditory end organ. The high-frequency portion of the amphibian papilla is mechanically tuned and tonotopically organized, and it emits spontaneous otoacoustic emissions. This high-frequency portion of the amphibian papilla shows a remarkable, functional resemblance to the mammalian cochlea
Revival of the magnetar PSR J1622-4950: observations with MeerKAT, Parkes, XMM-Newton, Swift, Chandra, and NuSTAR
New radio (MeerKAT and Parkes) and X-ray (XMM-Newton, Swift, Chandra, and
NuSTAR) observations of PSR J1622-4950 indicate that the magnetar, in a
quiescent state since at least early 2015, reactivated between 2017 March 19
and April 5. The radio flux density, while variable, is approximately 100x
larger than during its dormant state. The X-ray flux one month after
reactivation was at least 800x larger than during quiescence, and has been
decaying exponentially on a 111+/-19 day timescale. This high-flux state,
together with a radio-derived rotational ephemeris, enabled for the first time
the detection of X-ray pulsations for this magnetar. At 5%, the 0.3-6 keV
pulsed fraction is comparable to the smallest observed for magnetars. The
overall pulsar geometry inferred from polarized radio emission appears to be
broadly consistent with that determined 6-8 years earlier. However, rotating
vector model fits suggest that we are now seeing radio emission from a
different location in the magnetosphere than previously. This indicates a novel
way in which radio emission from magnetars can differ from that of ordinary
pulsars. The torque on the neutron star is varying rapidly and unsteadily, as
is common for magnetars following outburst, having changed by a factor of 7
within six months of reactivation.Comment: Published in ApJ (2018 April 5); 13 pages, 4 figure
Crystal Structures of the FAK Kinase in Complex with TAE226 and Related Bis-Anilino Pyrimidine Inhibitors Reveal a Helical DFG Conformation
Focal Adhesion Kinase (FAK) is a non-receptor tyrosine kinase required for cell migration, proliferation and survival. FAK overexpression has been documented in diverse human cancers and is associated with a poor clinical outcome. Recently, a novel bis-anilino pyrimidine inhibitor, TAE226, was reported to efficiently inhibit FAK signaling, arrest tumor growth and invasion and prolong the life of mice with glioma or ovarian tumor implants. Here we describe the crystal structures of the FAK kinase bound to TAE226 and three related bis-anilino pyrimidine compounds. TAE226 induces a conformation of the N-terminal portion of the kinase activation loop that is only observed in FAK, but is distinct from the conformation in both the active and inactive states of the kinase. This conformation appears to require a glycine immediately N-terminal to the βDFG motifβ, which adopts a helical conformation stabilized by interactions with TAE226. The presence of a glycine residue in this position contributes to the specificity of TAE226 and related compounds for FAK. Our work highlights the fact that kinases can access conformational space that is not necessarily utilized for their native catalytic regulation, and that such conformations can explain and be exploited for inhibitor specificity
A High Throughput Screen Identifies Chemical Modulators of the Laminin-Induced Clustering of Dystroglycan and Aquaporin-4 in Primary Astrocytes
Background: Aquaporin-4 (AQP4) constitutes the principal water channel in the brain and is clusteredat the perivascular astrocyte endfeet. This specific distribution of AQP4 plays a major role in maintaining water homeostasis in the brain. A growing body of evidence points to a role ofthe dystroglycan complex and its interaction with perivascular laminin in the clusteringof AQP4 atperivascular astrocyte endfeet. Indeed, mice lacking components of this complex or in which laminindystroglycan interaction is disrupted show a delayed onset of brain edema due to a redistribution of AQP4 away from astrocyte endfeet. It is therefore important to identify inhibitory drugs of laminin-dependent AQP4 clustering which may prevent or reduce brain edema. Methodolgy/Principal Findings: In the present study we used primary rat astrocyte cultures toscreen a library of.3,500 chemicals and identified 6 drugs that inhibit the laminin-induced clustering of dystroglycan and AQP4. Detailed analysis of the inhibitory drug, chloranil, revealed that its inhibition of the clustering is due to the metalloproteinase-2-mediated Γ-dystroglycan shedding and subsequent loss of laminin interaction with dystroglycan. Furthermore, chemical variants of chloranil induced a similar effect on Γ-dystroglycan and this was prevented by the antioxidant N-acetylcysteine. Conclusion/Significance: These findings reveal the mechanism of action of chloranil in preventing the laminin-induced clustering of dystroglycan and AQP4 and validate the use of high-throughput screening as a tool to identify drugs tha
- β¦