238 research outputs found
The AdS(5)xS(5) Semi-Symmetric Space Sine-Gordon Theory
The generalized symmetric space sine-Gordon theories are a series of
1+1-integrable field theories that are classically equivalent to superstrings
on symmetric space spacetimes F/G. They are formulated in terms of a
semi-symmetric space as a gauged WZW model with fermions and a potential term
to deform it away from the conformal fixed point. We consider in particular the
case of PSU(2,2|4)/Sp(2,2)xSp(4) which corresponds to AdS(5)xS(5). We argue
that the infinite tower of conserved charges of these theories includes an
exotic N=(8,8) supersymmetry that is realized in a mildy non-local way at the
Lagrangian level. The supersymmetry is associated to a double central extension
of the superalgebra psu(2|2)+psu(2|2) and includes a non-trivial R symmetry
algebra corresponding to global gauge transformations, as well as 2-dimensional
spacetime translations. We then explicitly construct soliton solutions and show
that they carry an internal moduli superspace CP(2|1)xCP(2|1) with both bosonic
and Grassmann collective coordinates. We show how to semi-classical quantize
the solitons by writing an effective quantum mechanical system on the moduli
space which takes the form of a co-adjoint orbit of SU(2|2)xSU(2|2). The
spectrum consists of a tower of massive states in the short, or atypical,
symmetric representations, just as the giant magnon states of the string world
sheet theory, although here the tower is truncated.Comment: 39 pages, references adde
Finite-gap equations for strings on AdS_3 x S^3 x T^4 with mixed 3-form flux
We study superstrings on AdS_3 x S^3 x T^4 supported by a combination of
Ramond-Ramond and Neveu-Schwarz-Neveu-Schwarz three form fluxes, and construct
a set of finite-gap equations that describe the classical string spectrum.
Using the recently proposed all-loop S-matrix we write down the all-loop Bethe
ansatz equations for the massive sector. In the thermodynamic limit the Bethe
ansatz reproduces the finite-gap equations. As part of this derivation we
propose expressions for the leading order dressing phases. These phases differ
from the well-known Arutyunov-Frolov-Staudacher phase that appears in the pure
Ramond-Ramond case. We also consider the one-loop quantization of the algebraic
curve and determine the one-loop corrections to the dressing phases. Finally we
consider some classical string solutions including finite size giant magnons
and circular strings.Comment: 44 pages, 3 figures. v2: references and a discussion about
perturbative results adde
The low-energy limit of AdS(3)/CFT2 and its TBA
We investigate low-energy string excitations in AdS3 × S3 × T4. When the worldsheet is decompactified, the theory has gapless modes whose spectrum at low energies is determined by massless relativistic integrable S matrices of the type introduced by Al. B. Zamolodchikov. The S matrices are non-trivial only for excitations with identical worldsheet chirality, indicating that the low-energy theory is a CFT2. We construct a Thermodynamic Bethe Ansatz (TBA) for these excitations and show how the massless modes’ wrapping effects may be incorporated into the AdS3 spectral problem. Using the TBA and its associated Y-system, we determine the central charge of the low-energy CFT2 to be c = 6 from calculating the vacuum energy for antiperiodic fermions — with the vacuum energy being zero for periodic fermions in agreement with a supersymmetric theory — and find the energies of some excited states
The Relativistic Avatars of Giant Magnons and their S-Matrix
The motion of strings on symmetric space target spaces underlies the
integrability of the AdS/CFT correspondence. Although these theories, whose
excitations are giant magnons, are non-relativistic they are classically
equivalent, via the Polhmeyer reduction, to a relativistic integrable field
theory known as a symmetric space sine-Gordon theory. These theories can be
formulated as integrable deformations of gauged WZW models. In this work we
consider the class of symmetric spaces CP^{n+1} and solve the corresponding
generalized sine-Gordon theories at the quantum level by finding the exact
spectrum of topological solitons, or kinks, and their S-matrix. The latter
involves a trignometric solution of the Yang-Baxer equation which exhibits a
quantum group symmetry with a tower of states that is bounded, unlike for
magnons, as a result of the quantum group deformation parameter q being a root
of unity. We test the S-matrix by taking the semi-classical limit and comparing
with the time delays for the scattering of classical solitons. We argue that
the internal CP^{n-1} moduli space of collective coordinates of the solitons in
the classical theory can be interpreted as a q-deformed fuzzy space in the
quantum theory. We analyse the n=1 case separately and provide a further test
of the S-matrix conjecture in this case by calculating the central charge of
the UV CFT using the thermodynamic Bethe Ansatz.Comment: 33 pages, important correction to S-matrix to ensure crossing
symmetr
Recommended from our members
AdS3/CFT2, finite-gap equations and massless modes
It is known that string theory on AdS 3 × M 7 backgrounds, where M 7 = S 3 × S 3 × S 1 or S 3 × T 4, is classically integrable. This integrability has been previously used to write down a set of integral equations, known as the finite-gap equations. These equations can be solved for the closed string spectrum of the theory. However, it has been known for some time that the finite-gap equations on these AdS 3 × M 7 backgrounds do not capture the dynamics of the massless modes of the closed string theory. In this paper we re-examine the derivation of the AdS 3 × M 7 finite-gap system. We find that the conditions that had previously been imposed on these integral equations in order to implement the Virasoro constraints are too strict, and are in fact not required. We identify the correct implementation of the Virasoro constraints on finite-gap equations and show that this new, less restrictive condition captures the complete closed string spectrum on AdS 3 × M 7
Clinical Efficacy of Blue Light Full Body Irradiation as Treatment Option for Severe Atopic Dermatitis
BACKGROUND: Therapy of atopic dermatitis (AD) relies on immunosuppression and/or UV irradiation. Here, we assessed clinical efficacy and histopathological alterations induced by blue light-treatment of AD within an observational, non-interventional study. METHODOLOGY/PRINCIPAL FINDINGS: 36 patients with severe, chronic AD resisting long term disease control with local corticosteroids were included. Treatment consisted of one cycle of 5 consecutive blue light-irradiations (28.9 J/cm(2)). Patients were instructed to ask for treatment upon disease exacerbation despite interval therapy with topical corticosteroids. The majority of patients noted first improvements after 2-3 cycles. The EASI score was improved by 41% and 54% after 3 and 6 months, respectively (p≤0.005, and p≤0.002). Significant improvement of pruritus, sleep and life quality was noted especially after 6 months. Also, frequency and intensity of disease exacerbations and the usage of topical corticosteroids was reduced. Finally, immunohistochemistry of skin biopsies obtained at baseline and after 5 and 15 days revealed that, unlike UV light, blue light-treatment did not induce Langerhans cell or T cell depletion from skin. CONCLUSIONS/SIGNIFICANCE: Blue light-irradiation may represent a suitable treatment option for AD providing long term control of disease. Future studies with larger patient cohorts within a randomized, placebo-controlled clinical trial are required to confirm this observation
The all-loop integrable spin-chain for strings on AdS3 × S 3 × T 4: The massive sector
We bootstrap the all-loop dynamic S-matrix for the homogeneous psu (1, 1|2)2 spin-chain believed to correspond to the discretization of the massive modes of string theory on AdS3 × S 3 × T 4. The S-matrix is the tensor product of two copies of the su (1|1)2 invariant S-matrix constructed recently for the d (2, 1; α)2 chain, and depends on two anti-symmetric dressing phases. We write down the crossing equations that these phases have to satisfy. Furthermore, we present the corresponding Bethe Ansatz, which differs from the one previously conjectured, and discuss how our construction matches several recent perturbative calculations
- …