355 research outputs found

    Differences in risk factors for children with special health care needs (CSHCN) receiving needed specialty care by socioeconomic status

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The purpose of this study is to identify factors affecting CSHCN's receiving needed specialty care among different socioeconomic levels. Previous literature has shown that Socioeconomic Status (SES) is a significant factor in CHSHCN receiving access to healthcare. Other literature has shown that factors of insurance, family size, race/ethnicity and sex also have effects on these children's receipt of care. However, this literature does not address whether other factors such as maternal education, geographic location, age, insurance type, severity of condition, or race/ethnicity have different effects on receiving needed specialty care for children in each SES level.</p> <p>Methods</p> <p>Data were obtained from the National Survey of Children with Special Health Care Needs, 2000–2002. The study analyzed the survey which studies whether CHSCN who needed specialty care received it. The analysis included demographic characteristics, geographical location of household, severity of condition, and social factors. Multiple logistic regression models were constructed for SES levels defined by federal poverty level: < 199%; 200–299%; ≥ 300%.</p> <p>Results</p> <p>For the poorest children (,199% FPL) being uninsured had a strong negative effect on receiving all needed specialty care. Being Hispanic was a protective factor. Having more than one adult in the household had a positive impact on receipt of needed specialty care but a larger number of children in the family had a negative impact. For the middle income group of children (200–299% of FPL severity of condition had a strong negative association with receipt of needed specialty care.</p> <p>Children in highest income group (> 300% FPL) were positively impacted by living in the Midwest and were negatively impacted by the mother having only some college compared to a four-year degree.</p> <p>Conclusion</p> <p>Factors affecting CSHCN receiving all needed specialty care differed among socioeconomic groups. These differences should be addressed in policy and practice. Future research should explore the CSHCN population by income groups to better serve this population</p

    Effectiveness of classroom based crew resource management training in the intensive care unit: study design of a controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Crew resource management (CRM) has the potential to enhance patient safety in intensive care units (ICU) by improving the use of non-technical skills. However, CRM evaluation studies in health care are inconclusive with regard to the effect of this training on behaviour and organizational outcomes, due to weak study designs and the scarce use of direct observations. Therefore, the aim of this study is to determine the effectiveness and cost-effectiveness of CRM training on attitude, behaviour and organization after one year, using a multi-method approach and matched control units. The purpose of the present article is to describe the study protocol and the underlying choices of this evaluation study of CRM in the ICU in detail.</p> <p>Methods/Design</p> <p>Six ICUs participated in a paired controlled trial, with one pre-test and two post test measurements (respectively three months and one year after the training). Three ICUs were trained and compared to matched control ICUs. The 2-day classroom-based training was delivered to multidisciplinary groups. Typical CRM topics on the individual, team and organizational level were discussed, such as situational awareness, leadership and communication. All levels of Kirkpatrick's evaluation framework (reaction, learning, behaviour and organisation) were assessed using questionnaires, direct observations, interviews and routine ICU administration data.</p> <p>Discussion</p> <p>It is expected that the CRM training acts as a generic intervention that stimulates specific interventions. Besides effectiveness and cost-effectiveness, the assessment of the barriers and facilitators will provide insight in the implementation process of CRM.</p> <p>Trial registration</p> <p>Netherlands Trial Register (NTR): <a href="http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1976">NTR1976</a></p

    Growth hormone axis in chronic kidney disease

    Get PDF
    Chronic kidney disease (CKD) in children is associated with dramatic changes in the growth hormone (GH) and insulin-like growth factor (IGF-1) axis, resulting in growth retardation. Moderate-to-severe growth retardation in CKD is associated with increased morbidity and mortality. Renal failure is a state of GH resistance and not GH deficiency. Some mechanisms of GH resistance are: reduced density of GH receptors in target organs, impaired GH-activated post-receptor Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling, and reduced levels of free IGF-1 due to increased inhibitory IGF-binding proteins (IGFBPs). Treatment with recombinant human growth hormone (rhGH) has been proven to be safe and efficacious in children with CKD. Even though rhGH has been shown to improve catch-up growth and to allow the child to achieve normal adult height, the final adult height is still significantly below the genetic target. Growth retardation may persist after renal transplantation due to multiple factors, such as steroid use, decreased renal function and an abnormal GH–IGF1 axis. Those below age 6 years are the ones to benefit most from transplantation in demonstrating acceleration in linear growth. Newer treatment modalities targeting the GH resistance with recombinant human IGF-1 (rhIGF-1), recombinant human IGFBP3 (rhIGFBP3) and IGFBP displacers are under investigation and may prove to be more effective in treating growth failure in CKD

    Differential response effects of data collection mode in a cancer screening study of unmarried women ages 40–75 years: A randomized trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little is known about the impact of data collection method on self-reported cancer screening behaviours, particularly among hard-to-reach populations. The purpose of this study is to examine the effects of data collection mode on response to indicators of cancer screenings by unmarried middle-aged and older women.</p> <p>Methods</p> <p>Three survey methods were evaluated for collecting data about mammography and Papanicolaou (hereafter, Pap) testing among heterosexual and sexual minority (e.g., lesbian and bisexual) women. Women ages 40–75 were recruited from June 2003 – June 2005 in Rhode Island. They were randomly assigned to receive: Self-Administered Mailed Questionnaire [SAMQ; N = 202], Computer-Assisted Telephone Interview [CATI; N = 200], or Computer-Assisted Self-Interview [CASI; N = 197]. Logistic regression models were computed to assess survey mode differences for 13 self-reported items related to cancer screenings, adjusting for age, education, income, race, marital status, partner gender, and recruitment source.</p> <p>Results</p> <p>Compared to women assigned to CATI, women assigned to SAMQ were less likely to report two or more years between most recent mammograms (CATI = 23.2% vs. SAMQ = 17.7%; AOR = 0.5, 95% CI = 0.3 – 0.8) and women assigned to CASI were slightly less likely to report being overdue for mammography (CATI = 16.5% vs. CASI = 11.8%; AOR = 0.5, 95% CI = 0.3 – 1.0) and Pap testing (CATI = 14.9% vs. CASI = 10.0%; AOR = 0.5, 95% CI = 0.2 – 1.0). There were no other consistent mode effects.</p> <p>Conclusion</p> <p>Among participants in this sample, mode of data collection had little effect on the reporting of mammography and Pap testing behaviours. Other measures such as efficiency and cost-effectiveness of the mode should also be considered when determining the most appropriate form of data collection for use in monitoring indicators of cancer detection and control.</p

    Asteroseismology and Interferometry

    Get PDF
    Asteroseismology provides us with a unique opportunity to improve our understanding of stellar structure and evolution. Recent developments, including the first systematic studies of solar-like pulsators, have boosted the impact of this field of research within Astrophysics and have led to a significant increase in the size of the research community. In the present paper we start by reviewing the basic observational and theoretical properties of classical and solar-like pulsators and present results from some of the most recent and outstanding studies of these stars. We centre our review on those classes of pulsators for which interferometric studies are expected to provide a significant input. We discuss current limitations to asteroseismic studies, including difficulties in mode identification and in the accurate determination of global parameters of pulsating stars, and, after a brief review of those aspects of interferometry that are most relevant in this context, anticipate how interferometric observations may contribute to overcome these limitations. Moreover, we present results of recent pilot studies of pulsating stars involving both asteroseismic and interferometric constraints and look into the future, summarizing ongoing efforts concerning the development of future instruments and satellite missions which are expected to have an impact in this field of research.Comment: Version as published in The Astronomy and Astrophysics Review, Volume 14, Issue 3-4, pp. 217-36

    Accumulation of Endogenous LITAF in Aggresomes

    Get PDF
    LITAF is a 161 amino acid cellular protein which includes a proline rich N-terminus and a conserved C-terminal domain known as the simple-like domain. Mutations in LITAF have been identified in Charcot-Marie tooth disease, a disease characterized by protein aggregates. Cells transfected with cellular LITAF reveal that LITAF is localized to late endosomes/lysosomes. Here we investigated the intracellular localization of endogenous LITAF. We demonstrated that endogenous LITAF accumulates at a discrete cytoplasmic site in BGMK cells that we identify as the aggresome. To determine the domain within LITAF that is responsible for the localization of LITAF to aggresomes, we created a construct that contained the C-terminal simple-like domain of LITAF and found that this construct also localizes to aggresomes. These data suggest the simple-like domain is responsible for targeting endogenous LITAF to the aggresome

    N-Acetylcysteine and Allopurinol Synergistically Enhance Cardiac Adiponectin Content and Reduce Myocardial Reperfusion Injury in Diabetic Rats

    Get PDF
    Background: Hyperglycemia-induced oxidative stress plays a central role in the development of diabetic myocardial complications. Adiponectin (APN), an adipokine with anti-diabetic and anti-ischemic effects, is decreased in diabetes. It is unknown whether or not antioxidant treatment with N-acetylcysteine (NAC) and/or allopurinol (ALP) can attenuate APN deficiency and myocardial ischemia reperfusion (MI/R) injury in the early stage of diabetes. Methodology/Principal Findings: Control or streptozotocin (STZ)-induced diabetic rats were either untreated (C, D) or treated with NAC (1.5 g/kg/day) or ALP (100 mg/kg/day) or their combination for four weeks starting one week after STZ injection. Plasma and cardiac biochemical parameters were measured after the completion of treatment, and the rats were subjected to MI/R by occluding the left anterior descending artery for 30 min followed by 2 h reperfusion. Plasma and cardiac APN levels were decreased in diabetic rats accompanied by decreased cardiac APN receptor 2 (AdipoR2), reduced phosphorylation of Akt, signal transducer and activator of transcription 3 (STAT3) and endothelial nitric oxide synthase (eNOS) but increased IL-6 and TNF-α (all P<0.05 vs. C). NAC but not ALP increased cardiac APN concentrations and AdipoR2 expression in diabetic rats. ALP enhanced the effects of NAC in restoring cardiac AdipoR2 and phosphorylation of Akt, STAT3 and eNOS in diabetic rats. Further, NAC and ALP, respectively, decreased postischemic myocardial infarct size and creatinine kinase-MB (CK-MB) release in diabetic rats, while their combination conferred synergistic protective effects. In addition, exposure of cultured rat cardiomyocytes to high glucose resulted in significant reduction of cardiomyocyte APN concentration and AdipoR2 protein expression. APN supplementation restored high glucose induced AdipoR2 reduction in cardiomyocytes. Conclusions/Significance: NAC and ALP synergistically restore myocardial APN and AdipoR2 mediated eNOS activation. This may represent the mechanism through which NAC and ALP combination greatly reduces MI/R injury in early diabetic rats. © 2011 Wang et al.published_or_final_versio

    'Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia'

    Get PDF
    Friedreich's ataxia (FRDA) is an inherited neurodegenerative disease. The mutation consists of a GAA repeat expansion within the FXN gene, which downregulates frataxin, leading to abnormal mitochondrial iron accumulation, which may in turn cause changes in mitochondrial function. Although, many studies of FRDA patients and mouse models have been conducted in the past two decades, the role of frataxin in mitochondrial pathophysiology remains elusive. Are the mitochondrial abnormalities only a side effect of the increased accumulation of reactive iron, generating oxidative stress? Or does the progressive lack of iron-sulphur clusters (ISCs), induced by reduced frataxin, cause an inhibition of the electron transport chain complexes (CI, II and III) leading to reactive oxygen species escaping from oxidative phosphorylation reactions? To answer these crucial questions, we have characterised the mitochondrial pathophysiology of a group of disease-relevant and readily accessible neurons, cerebellar granule cells, from a validated FRDA mouse model. By using live cell imaging and biochemical techniques we were able to demonstrate that mitochondria are deregulated in neurons from the YG8R FRDA mouse model, causing a decrease in mitochondrial membrane potential (▵Ψm) due to an inhibition of Complex I, which is partially compensated by an overactivation of Complex II. This complex activity imbalance leads to ROS generation in both mitochondrial matrix and cytosol, which results in glutathione depletion and increased lipid peroxidation. Preventing this increase in lipid peroxidation, in neurons, protects against in cell death. This work describes the pathophysiological properties of the mitochondria in neurons from a FRDA mouse model and shows that lipid peroxidation could be an important target for novel therapeutic strategies in FRDA, which still lacks a cure
    corecore