12 research outputs found
Current practice and recommendations in UK epilepsy monitoring units. Report of a national survey and workshop
PURPOSE: Inpatient video-EEG monitoring (VEM) is an important investigation in patients with seizures or blackouts, and in the pre-surgical workup of patients with epilepsy. There has been an expansion in the number of Epilepsy Monitoring Units (EMU) in the UK offering VEM with a necessary increase in attention on quality and safety. Previous surveys have shown variation across centres on issues including consent and patient monitoring. METHOD: In an effort to bring together healthcare professionals in the UK managing patients on EMU, we conducted an online survey of current VEM practice and held a one-day workshop convened under the auspices of the British Chapter of the ILAE. The survey and workshop aimed to cover all aspects of VEM, including pre-admission, consent procedures, patient safety, drug reduction and reinstatement, seizure management, staffing levels, ictal testing and good data recording practice. RESULTS: This paper reports on the findings of the survey, the workshop presentations and workshop discussions. 32 centres took part in the survey and there were representatives from 22 centres at the workshop. There was variation in protocols, procedures and consent processes between units, and levels of observation of monitored patients. Nevertheless, the workshop discussion found broad areas of agreement on points. CONCLUSION: A survey and workshop of UK epilepsy monitoring units found that some variability in practice is inevitable due to different local arrangements and patient groups under investigation. However, there were areas of clear consensus particularly in relation to consent and patient safety that can be applied to most units and form a basis for setting minimum standards
GIT2 Acts as a Potential Keystone Protein in Functional Hypothalamic Networks Associated with Age-Related Phenotypic Changes in Rats
The aging process affects every tissue in the body and represents one of the most complicated and highly integrated inevitable physiological entities. The maintenance of good health during the aging process likely relies upon the coherent regulation of hormonal and neuronal communication between the central nervous system and the periphery. Evidence has demonstrated that the optimal regulation of energy usage in both these systems facilitates healthy aging. However, the proteomic effects of aging in regions of the brain vital for integrating energy balance and neuronal activity are not well understood. The hypothalamus is one of the main structures in the body responsible for sustaining an efficient interaction between energy balance and neurological activity. Therefore, a greater understanding of the effects of aging in the hypothalamus may reveal important aspects of overall organismal aging and may potentially reveal the most crucial protein factors supporting this vital signaling integration. In this study, we examined alterations in protein expression in the hypothalami of young, middle-aged, and old rats. Using novel combinatorial bioinformatics analyses, we were able to gain a better understanding of the proteomic and phenotypic changes that occur during the aging process and have potentially identified the G protein-coupled receptor/cytoskeletal-associated protein GIT2 as a vital integrator and modulator of the normal aging process
Understanding the futility of countries’ obligations for health rights: realising justice for the global poor
Favorable effect of bortezomib in dense deposit disease associated with monoclonal gammopathy: a case report
Assessing pharmacy student experience with, knowledge of and attitudes towards harm reduction: illuminating barriers to pharmacist-led harm reduction
A real-world longitudinal study of anemia management in non-dialysis-dependent chronic kidney disease patients: a multinational analysis of CKDopps
The Protective Role of PAC1-Receptor Agonist Maxadilan in BCCAO-Induced Retinal Degeneration
A number of studies have proven that pituitary adenylate cyclase activating polypeptide (PACAP) is protective in neurodegenerative diseases. Permanent bilateral common carotid artery occlusion (BCCAO) causes severe degeneration in the rat retina. In our previous studies, protective effects were observed with PACAP1-38, PACAP1-27 and VIP, but not with their related peptides, glucagon or secretin in BCCAO. All three PACAP receptors (PAC1, VPAC1, VPAC2) appear in the retina. Molecular and immunohistochemical analysis demonstrated that the retinoprotective effects are most probably mainly mediated by the PAC1 receptor. The aim of the present study was to investigate the retinoprotective effects of a selective PAC1-receptor agonist maxadilan in BCCAO-induced retinopathy. Wistar rats were used in the experiment. After performing BCCAO, the right eye was treated with intravitreal maxadilan (0.1 μM or 1 μM), while the left eye was injected with vehicle. Sham-operated rats received the same treatment. Two weeks after the operation, retinas were processed for standard morphometric- and molecular analysis. Intravitreal injection of 0.1 μM or 1 μM maxadilan caused significant protection in the thickness of most retinal layers and the number of cells in the GCL compared to the BCCAO-operated eyes. In addition, 1 μM maxadilan application was more effective than 0.1 μM maxadilan treatment in the ONL, INL, IPL, and the entire retina (OLM-ILM). Maxadilan treatment significantly decreased cytokine expressions (CINC-1, IL-1α and L-selectin) in ischemia. In summary, our histological and molecular analysis showed that maxadilan, a selective PAC1 receptor agonist, has a protective role in BCCAO-induced retinal degeneration, further supporting the role of PAC1 receptor conveying the retinoprotective effects of PACAP
