47 research outputs found

    Mobile DNA transposition in somatic cells

    Get PDF
    It had been long assumed that almost all insertions of mobile DNA elements occurred during germ-cell development rather than in somatic-cell development, but solid evidence for transposition in somatic cells is now accumulating. To add to this evidence, a recent paper in Mobile DNA reports the somatic transposition of a site-specific retrotransposon, R2, into its insertion site in 28S ribosomal DNA in Drosophila embryos

    Mammalian sex determination—insights from humans and mice

    Get PDF
    Disorders of sex development (DSD) are congenital conditions in which the development of chromosomal, gonadal, or anatomical sex is atypical. Many of the genes required for gonad development have been identified by analysis of DSD patients. However, the use of knockout and transgenic mouse strains have contributed enormously to the study of gonad gene function and interactions within the development network. Although the genetic basis of mammalian sex determination and differentiation has advanced considerably in recent years, a majority of 46,XY gonadal dysgenesis patients still cannot be provided with an accurate diagnosis. Some of these unexplained DSD cases may be due to mutations in novel DSD genes or genomic rearrangements affecting regulatory regions that lead to atypical gene expression. Here, we review our current knowledge of mammalian sex determination drawing on insights from human DSD patients and mouse models

    The transcriptional control of trunk neural crest induction, survival, and delamination

    Get PDF
    Trunk neural crest cells are generated at the border between the neural plate and nonneural ectoderm, where they initiate a distinct program of gene expression, undergo an epithelial-mesenchymal transition (EMT), and delaminate from the neuroepithelium. Here, we provide evidence that members of three families of transcription induce these properties in premigratory neural crest cells. Sox9 acts to provide the competence for neural crest cells to undergo an EMT and is required for trunk neural crest survival. In the absence of Sox9, cells apoptose prior to or shortly after delamination. Slug/Snail, in the presence of Sox9, is sufficient to induce an EMT in neural epithelial cells, while FoxD3 regulates the expression of cell-cell adhesion molecules required for neural crest migration. Together, the data suggest a model in which a combination of transcription factors regulates the acquisition of the diverse properties of neural crest cells. Copyright © 2005 by Elsevier Inc.link_to_subscribed_fulltex

    R-spondin1 is essential in sex determination, skin differentiation and malignancy

    No full text
    R-spondins are a recently characterized small family of growth factors. Here we show that human R-spondin1 (RSPO1) is the gene disrupted in a recessive syndrome characterized by XX sex reversal, palmoplantar hyperkeratosis and predisposition to squamous cell carcinoma of the skin. Our data show, for the first time, that disruption of a single gene can lead to complete female-to-male sex reversal in the absence of the testis determining gene, SRY

    Activation of beta-catenin signaling by Rspo1 controls differentiation of the mammalian ovary.

    No full text
    The sex of an individual is determined by the fate of the gonad. While the expression of Sry and Sox9 is sufficient to induce male development, we here show that female differentiation requires activation of the canonical b-catenin signaling pathway. b-catenin activation is controlled by Rspo1 in XX gonads and Rspo1 knockout mice show masculinized gonads. Molecular analyses demonstrate an absence of female-specific activation of Wnt4 and as a consequence XY-like vascularization and steroidogenesis. Moreover, germ cells of XX knockout embryos show changes in cellular adhesions and a failure to enter XX specific meiosis. Sex cords develop around birth, when Sox9 becomes strongly activated. Thus, a balance between Sox9 and b-catenin activation determines the fate of the gonad, with Rspo1 acting as a crucial regulator of canonical b-catenin signaling required for female development
    corecore