1,219 research outputs found

    Chemical characteristics of Pacific tropospheric air in the region of the Intertropical Convergence Zone and South Pacific Convergence Zone

    Get PDF
    The Pacific Exploratory Mission (PEM)-Tropics provided extensive aircraft data to study the atmospheric chemistry of tropospheric air in Pacific Ocean regions, extending from Hawaii to New Zealand and from Fiji to east of Easter Island. This region, especially the tropics, includes some of the cleanest tropospheric air of the world and, as such, is important for studying atmospheric chemical budgets and cycles. The region also provides a sensitive indicator of the global-scale impact of human activity on the chemistry of the troposphere, and includes such important features as the Pacific "warm pool," the Intertropical Convergence Zone (ITCZ), the South Pacific Convergence Zone (SPCZ), and Walker Cell circulations. PEM-Tropics was conducted from August to October 1996. The ITCZ and SPCZ are major upwelling regions within the South Pacific and, as such, create boundaries to exchange of tropospheric air between regions to the north and south. Chemical data obtained in the near vicinity of the ITCZ and the SPCZ are examined. Data measured within the convergent zones themselves are not considered. The analyses show that air north and south of the convergent zones have different chemical signatures, and the signatures are reflective of the source regions and transport histories of the air. Air north of the ITCZ shows a modest urban/industrialized signature compared to air south of the ITCZ. The chemical signature of air south of the SPCZ is dominated by combustion emissions from biomass burning, while air north of the SPCZ is relatively clean and of similar composition to ITCZ south air. Chemical signature differences of air north and south of the zones are most pronounced at altitudes below 5 km, and, as such, show that the ITCZ and SPCZ are effective low-altitude barriers to the transport of tropospheric air. At altitudes of 8 to 10 km, chemical signatures are less dissimilar, and air backward trajectories (to 10 days) show cross-convergent-zone flow. At altitudes below about 5 km, little cross-zonal flow is observed. Chemical signatures presented include over 30 trace chemical species including ultrafine, fine, and heated-fine (250°C) aerosol. Copyright 1999 by the American Geophysical Union

    Evaluating inputs for organic farming – a new system. Proposals of the ORGANIC INPUTS EVALUATION project

    Get PDF
    This volume contains proposals for criteria for evaluation of plant protection products, fertilisers and soil conditioners1 to be used in organic agriculture. These ideas were developed in the course of the European Union (EU) Concerted Action project ‘ORGANIC INPUTS EVALUATION’ (QLK5-CT-2002-02565). For more information on this project see the end of this volume or visit the project website www.organicinputs.org. The documents in this volume are proposals elaborated by the project consortium and external experts. They were discussed with a broader audience at a public conference held in Brussels on October 13, 2005, and have been amended accordingly. Our proposals also include a “criteria matrix”, which is in Microsoft Excel format, and therefore stands as a separate file. The criteria matrix is discussed in section 5, but we strongly recommend that you consult the original document. To illustrate the use of the matrix, we have further prepared two case studies, which are also separate Excel files. All of these files are contained on the CD, and can also be downloaded from the project website. Currently, Regulation 2092/91 is under revision. We hope that our ideas can be incorporated into the regulation during this revision! In addition, we strongly encourage national institutions to make use of our proposals at the national level
    • 

    corecore