23 research outputs found

    Improved annotation of 3' untranslated regions and complex loci by combination of strand-specific direct RNA sequencing, RNA-seq and ESTs

    Get PDF
    The reference annotations made for a genome sequence provide the framework for all subsequent analyses of the genome. Correct annotation is particularly important when interpreting the results of RNA-seq experiments where short sequence reads are mapped against the genome and assigned to genes according to the annotation. Inconsistencies in annotations between the reference and the experimental system can lead to incorrect interpretation of the effect on RNA expression of an experimental treatment or mutation in the system under study. Until recently, the genome-wide annotation of 3-prime untranslated regions received less attention than coding regions and the delineation of intron/exon boundaries. In this paper, data produced for samples in Human, Chicken and A. thaliana by the novel single-molecule, strand-specific, Direct RNA Sequencing technology from Helicos Biosciences which locates 3-prime polyadenylation sites to within +/- 2 nt, were combined with archival EST and RNA-Seq data. Nine examples are illustrated where this combination of data allowed: (1) gene and 3-prime UTR re-annotation (including extension of one 3-prime UTR by 5.9 kb); (2) disentangling of gene expression in complex regions; (3) clearer interpretation of small RNA expression and (4) identification of novel genes. While the specific examples displayed here may become obsolete as genome sequences and their annotations are refined, the principles laid out in this paper will be of general use both to those annotating genomes and those seeking to interpret existing publically available annotations in the context of their own experimental dataComment: 44 pages, 9 figure

    A General Definition and Nomenclature for Alternative Splicing Events

    Get PDF
    Understanding the molecular mechanisms responsible for the regulation of the transcriptome present in eukaryotic cells is one of the most challenging tasks in the postgenomic era. In this regard, alternative splicing (AS) is a key phenomenon contributing to the production of different mature transcripts from the same primary RNA sequence. As a plethora of different transcript forms is available in databases, a first step to uncover the biology that drives AS is to identify the different types of reflected splicing variation. In this work, we present a general definition of the AS event along with a notation system that involves the relative positions of the splice sites. This nomenclature univocally and dynamically assigns a specific “AS code” to every possible pattern of splicing variation. On the basis of this definition and the corresponding codes, we have developed a computational tool (AStalavista) that automatically characterizes the complete landscape of AS events in a given transcript annotation of a genome, thus providing a platform to investigate the transcriptome diversity across genes, chromosomes, and species. Our analysis reveals that a substantial part—in human more than a quarter—of the observed splicing variations are ignored in common classification pipelines. We have used AStalavista to investigate and to compare the AS landscape of different reference annotation sets in human and in other metazoan species and found that proportions of AS events change substantially depending on the annotation protocol, species-specific attributes, and coding constraints acting on the transcripts. The AStalavista system therefore provides a general framework to conduct specific studies investigating the occurrence, impact, and regulation of AS

    Extension of human lncRNA transcripts by RACE coupled with long-read high-throughput sequencing (RACE-Seq)

    Get PDF
    Long non-coding RNAs (lncRNAs) constitute a large, yet mostly uncharacterized fraction of the mammalian transcriptome. Such characterization requires a comprehensive, high-quality annotation of their gene structure and boundaries, which is currently lacking. Here we describe RACE-Seq, an experimental workflow designed to address this based on RACE (rapid amplification of cDNA ends) and long-read RNA sequencing. We apply RACE-Seq to 398 human lncRNA genes in seven tissues, leading to the discovery of 2,556 on-target, novel transcripts. About 60% of the targeted loci are extended in either 5′ or 3′, often reaching genomic hallmarks of gene boundaries. Analysis of the novel transcripts suggests that lncRNAs are as long, have as many exons and undergo as much alternative splicing as protein-coding genes, contrary to current assumptions. Overall, we show that RACE-Seq is an effective tool to annotate an organism’s deep transcriptome, and compares favourably to other targeted sequencing techniques

    Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling

    Get PDF
    Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes

    Predicting genes in closely related species with Scipio and WebScipio.

    No full text
    Scipio and WebScipio are homology-based gene prediction software designed for annotating multigenic families and for transferring annotations from one species to closely related species. The strengths include the power to cope with sequencing-related problems such as sequencing errors and assemblies with short contigs but also the ability to correctly predict genes with unusually long introns and/or rather short exons. WebScipio is connected to diArk, the largest collection of eukaryotic genome assemblies, and thereby offers a very convenient way to correct existing annotations and to extend protein family datasets. WebScipio is also a key resource for researchers interested in mutually exclusive splicing, allowing to search for alternative exons not only in introns but also in up- and downstream regions in case of incompleteness of the search sequence. In this chapter, I describe how to use Scipio and WebScipio keeping a first-time user in mind
    corecore