25,426 research outputs found

    Infrared divergences and harmonic anomalies in the two-loop superstring effective action

    Get PDF
    This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are creditedArticle funded by SCOAP3. This research is partially supported by STFC (Grant ST/L000415/1, String theory, gauge theory & duality

    A minK-HERG complex regulates the cardiac potassium current I(Kr).

    Get PDF
    MinK is a widely expressed protein of relative molecular mass approximately 15K that forms potassium channels by aggregation with other membrane proteins. MinK governs ion channel activation, regulation by second messengers, and the function and structure of the ion conduction pathway. Association of minK with a channel protein known as KvLQT1 produces a voltage-gated outward K+ current (I[sK]) resembling the slow cardiac repolarization current (I[Ks]). HERG, a human homologue of the ether-a-go-go gene of the fruitfly Drosophila melanogaster, encodes a protein that produces the rapidly activating cardiac delayed rectifier (I[Kr]). These two potassium currents, I(Ks) and I(Kr), provide the principal repolarizing currents in cardiac myocytes for the termination of action potentials. Although heterologously expressed HERG channels are largely indistinguishable from native cardiac I(Kr), a role for minK in this current is suggested by the diminished I(Kr) in an atrial tumour line subjected to minK antisense suppression. Here we show that HERG and minK form a stable complex, and that this heteromultimerization regulates I(Kr) activity. MinK, through the formation of heteromeric channel complexes, is thus central to the control of the heart rate and rhythm

    Wideband CDMA I: Guest editorial

    Get PDF
    published_or_final_versio

    Dynamic Conductance of Carbon Nanotubes

    Get PDF
    The dynamic conductance of carbon nanotubes was investigated using the nonequilibrium Green's function formalism within the context of a tight-binding model. Specifically, we have studied the ac response of tubes of different helicities, both with and without defects, and an electronic heterojunction. Because of the induced displacement currents, the dynamic conductance of the nanotubes differs significantly from the dc conductance displaying both capacitive and inductive responses. The important role of photon-assisted transport through nanotubes is revealed and its implications for experiments discussed.published_or_final_versio

    Model Adaptation with Synthetic and Real Data for Semantic Dense Foggy Scene Understanding

    Full text link
    This work addresses the problem of semantic scene understanding under dense fog. Although considerable progress has been made in semantic scene understanding, it is mainly related to clear-weather scenes. Extending recognition methods to adverse weather conditions such as fog is crucial for outdoor applications. In this paper, we propose a novel method, named Curriculum Model Adaptation (CMAda), which gradually adapts a semantic segmentation model from light synthetic fog to dense real fog in multiple steps, using both synthetic and real foggy data. In addition, we present three other main stand-alone contributions: 1) a novel method to add synthetic fog to real, clear-weather scenes using semantic input; 2) a new fog density estimator; 3) the Foggy Zurich dataset comprising 38083808 real foggy images, with pixel-level semantic annotations for 1616 images with dense fog. Our experiments show that 1) our fog simulation slightly outperforms a state-of-the-art competing simulation with respect to the task of semantic foggy scene understanding (SFSU); 2) CMAda improves the performance of state-of-the-art models for SFSU significantly by leveraging unlabeled real foggy data. The datasets and code are publicly available.Comment: final version, ECCV 201

    Perturbation of Retinoid Homeostasis Increases Malformation Risk in Embryos Exposed to Pregestational Diabetes

    Get PDF
    Pregestational diabetes is highly associated with increased risk of birth defects. However, factors that can increase or reduce expressivity and penetrance of malformations in diabetic pregnancies remain poorly identified. All-trans retinoic acid (RA) plays crucial roles in embryogenesis. Here, we find that Cyp26a1, which encodes a key enzyme for catabolic inactivation of RA required for tight control of local RA concentrations, is significantly down-regulated in embryos of diabetic mice. Embryonic tissues expressing Cyp26a1 show reduced efficiency of RA clearance. Diabetes-exposed embryos are thus sensitized to RA and more vulnerable to the deleterious effects of increased RA signalling. Susceptibility to RA teratogenesis is further potentiated in embryos with a pre-existing genetic defect of RA metabolism. Increasing RA clearance efficiency by a pre-conditioning approach can counteract the increased susceptibility to RA teratogenesis in embryos of diabetic mice. Our findings provide new insight into gene-environment interactions that influence individual risk in manifestation of diabetes-related birth defects, and shed light on the environmental risk factors and genetic variants for a stratified medicine approach to screen diabetic women of childbearing age and assess risk of birth defects during pregnancy

    Enhanced Resolution in Nanoscale NMR via Quantum Sensing with Pulses of Finite Duration

    Get PDF
    The nitrogen-vacancy (N-V) color center in diamond is an enormously important platform for the development of quantum sensors, including for single-spin and single-molecule NMR. Detection of weak single-spin signals is greatly enhanced by repeated sequences of microwave pulses; in these dynamicaldecoupling techniques, the key control parameters swept in the experiment are the time intervals, τ, between pulses. Here, we show that, in fact, the pulse duration tp offers a powerful additional control parameter. While a non-negligible tp was previously considered simply a source of experimental error, we elucidate here the underlying quantum dynamics: we identify a landscape of quantum-state crossings which are usually inactive (closed) but may be controllably activated (opened) by adjusting tp from zero. We identify these crossings with recently observed but unexpected dips (so-called spurious dips) seen in the quantum coherence of the N-V spin. With this new understanding, both the position and the strength of these sharp features may be accurately controlled; they coexist with the usual broader coherence dips of short-duration microwave pulses, but their sharpness allows for higher-resolution spectroscopy with quantum diamond sensors, or their analogs

    Pharmacometabolomic mapping of early biochemical changes induced by sertraline and placebo.

    Get PDF
    In this study, we characterized early biochemical changes associated with sertraline and placebo administration and changes associated with a reduction in depressive symptoms in patients with major depressive disorder (MDD). MDD patients received sertraline or placebo in a double-blind 4-week trial; baseline, 1 week, and 4 weeks serum samples were profiled using a gas chromatography time of flight mass spectrometry metabolomics platform. Intermediates of TCA and urea cycles, fatty acids and intermediates of lipid biosynthesis, amino acids, sugars and gut-derived metabolites were changed after 1 and 4 weeks of treatment. Some of the changes were common to the sertraline- and placebo-treated groups. Changes after 4 weeks of treatment in both groups were more extensive. Pathway analysis in the sertraline group suggested an effect of drug on ABC and solute transporters, fatty acid receptors and transporters, G signaling molecules and regulation of lipid metabolism. Correlation between biochemical changes and treatment outcomes in the sertraline group suggested a strong association with changes in levels of branched chain amino acids (BCAAs), lower BCAAs levels correlated with better treatment outcomes; pathway analysis in this group revealed that methionine and tyrosine correlated with BCAAs. Lower levels of lactic acid, higher levels of TCA/urea cycle intermediates, and 3-hydroxybutanoic acid correlated with better treatment outcomes in placebo group. Results of this study indicate that biochemical changes induced by drug continue to evolve over 4 weeks of treatment and that might explain partially delayed response. Response to drug and response to placebo share common pathways but some pathways are more affected by drug treatment. BCAAs seem to be implicated in mechanisms of recovery from a depressed state following sertraline treatment

    Shape-based peak identification for ChIP-Seq

    Get PDF
    We present a new algorithm for the identification of bound regions from ChIP-seq experiments. Our method for identifying statistically significant peaks from read coverage is inspired by the notion of persistence in topological data analysis and provides a non-parametric approach that is robust to noise in experiments. Specifically, our method reduces the peak calling problem to the study of tree-based statistics derived from the data. We demonstrate the accuracy of our method on existing datasets, and we show that it can discover previously missed regions and can more clearly discriminate between multiple binding events. The software T-PIC (Tree shape Peak Identification for ChIP-Seq) is available at http://math.berkeley.edu/~vhower/tpic.htmlComment: 12 pages, 6 figure
    corecore