26 research outputs found

    Human endogenous retroviruses form a reservoir of T cell targets in hematological cancers

    Full text link
    Human endogenous retroviruses (HERV) form a substantial part of the human genome, but mostly remain transcriptionally silent under strict epigenetic regulation, yet can potentially be reactivated by malignant transformation or epigenetic therapies. Here, we evaluate the potential for T cell recognition of HERV elements in myeloid malignancies by mapping transcribed HERV genes and generating a library of 1169 potential antigenic HERV-derived peptides predicted for presentation by 4 HLA class I molecules. Using DNA barcode-labeled MHC-I multimers, we find CD8+ T cell populations recognizing 29 HERV-derived peptides representing 18 different HERV loci, of which HERVH-5, HERVW-1, and HERVE-3 have more profound responses; such HERV-specific T cells are present in 17 of the 34 patients, but less frequently in healthy donors. Transcriptomic analyses reveal enhanced transcription of the HERVs in patients; meanwhile DNA-demethylating therapy causes a small and heterogeneous enhancement in HERV transcription without altering T cell recognition. Our study thus uncovers T cell recognition of HERVs in myeloid malignancies, thereby implicating HERVs as potential targets for immunotherapeutic therapies

    Targeting the histone methyltransferase G9a activates imprinted genes and improves survival of a mouse model of Prader–Willi syndrome

    Get PDF
    Prader–Willi syndrome (PWS) is an imprinting disorder caused by a deficiency of paternally expressed gene(s) in the 15q11–q13 chromosomal region. The regulation of imprinted gene expression in this region is coordinated by an imprinting center (PWS-IC). In individuals with PWS, genes responsible for PWS on the maternal chromosome are present, but repressed epigenetically, which provides an opportunity for the use of epigenetic therapy to restore expression from the maternal copies of PWS-associated genes. Through a high-content screen (HCS) of >9,000 small molecules, we discovered that UNC0638 and UNC0642—two selective inhibitors of euchromatic histone lysine N-methyltransferase-2 (EHMT2, also known as G9a)—activated the maternal (m) copy of candidate genes underlying PWS, including the SnoRNA cluster SNORD116, in cells from humans with PWS and also from a mouse model of PWS carrying a paternal (p) deletion from small nuclear ribonucleoprotein N (Snrpn (S)) to ubiquitin protein ligase E3A (Ube3a (U)) (mouse model referred to hereafter as m+/pΔS−U). Both UNC0642 and UNC0638 caused a selective reduction of the dimethylation of histone H3 lysine 9 (H3K9me2) at PWS-IC, without changing DNA methylation, when analyzed by bisulfite genomic sequencing. This indicates that histone modification is essential for the imprinting of candidate genes underlying PWS. UNC0642 displayed therapeutic effects in the PWS mouse model by improving the survival and the growth of m+/pΔS−U newborn pups. This study provides the first proof of principle for an epigenetics-based therapy for PWS

    Independent genomewide screens identify the tumor suppressor VTRNA2-1 as a human epiallele responsive to periconceptional environment

    Get PDF
    Background: Interindividual epigenetic variation that occurs systemically must be established prior to gastrulation in the very early embryo and, because it is systemic, can be assessed in easily biopsiable tissues. We employ two independent genome-wide approaches to search for such variants. Results: First, we screen for metastable epialleles by performing genomewide bisulfite sequencing in peripheral blood lymphocyte (PBL) and hair follicle DNA from two Caucasian adults. Second, we conduct a genomewide screen for genomic regions at which PBL DNA methylation is affected by season of conception in rural Gambia. Remarkably, both approaches identify the genomically imprinted VTRNA2-1 as a top environmentally responsive epiallele. We demonstrate systemic and stochastic interindividual variation in DNA methylation at the VTRNA2-1 differentially methylated region in healthy Caucasian and Asian adults and show, in rural Gambians, that periconceptional environment affects offspring VTRNA2-1 epigenotype, which is stable over at least 10 years. This unbiased screen also identifies over 100 additional candidate metastable epialleles, and shows that these are associated with cis genomic features including transposable elements. Conclusions: The non-coding VTRNA2-1 transcript (also called nc886) is a putative tumor suppressor and modulator of innate immunity. Thus, these data indicating environmentally induced loss of imprinting at VTRNA2-1 constitute a plausible causal pathway linking early embryonic environment, epigenetic alteration, and human disease. More broadly, the list of candidate metastable epialleles provides a resource for future studies of epigenetic variation and human disease

    Accurate prediction of response to endocrine therapy in breast cancer patients: current and future biomarkers

    Get PDF
    WOS: 000390900700001PubMed ID: 27903276Approximately 70% of patients have breast cancers that are oestrogen receptor alpha positive (ER+) and are therefore candidates for endocrine treatment. Many of these patients relapse in the years during or following completion of adjuvant endocrine therapy. Thus, many ER+ cancers have primary resistance or develop resistance to endocrine therapy during treatment. Recent improvements in our understanding of how tumours evolve during treatment with endocrine agents have identified both changes in gene expression and mutational profiles, in the primary cancer as well as in circulating tumour cells. Analysing these changes has the potential to improve the prediction of which specific patients will respond to endocrine treatment. Serially profiled biopsies during treatment in the neoadjuvant setting offer promise for accurate and early prediction of response to both current and novel drugs and allow investigation of mechanisms of resistance. In addition, recent advances in monitoring tumour evolution through non-invasive (liquid) sampling of circulating tumour cells and cell-free tumour DNA may provide a method to detect resistant clones and allow implementation of personalized treatments for metastatic breast cancer patients. This review summarises current and future biomarkers and signatures for predicting response to endocrine treatment, and discusses the potential for using approved drugs and novel agents to improve outcomes. Increased prediction accuracy is likely to require sequential sampling, utilising preoperative or neoadjuvant treatment and/or liquid biopsies and an improved understanding of both the dynamics and heterogeneity of breast cancer.European CommissionEuropean Commission Joint Research Centre [658170]This work was funded by the European Commission H2020 Marie Sklodowska Curie Action Individual Fellowship (H2020-MSCA-IF, 658170) to CS and Breast Cancer Now to JMD and AHS

    Design and Baseline Characteristics of STEP-HFpEF Program Evaluating Semaglutide in Patients With Obesity HFpEF Phenotype

    No full text
    Background: The majority of patients with heart failure with preserved ejection fraction (HFpEF) have the obesity phenotype, but no therapies specifically targeting obesity in HFpEF exist. Objectives: The aim of this study was to describe the design and baseline characteristics of 2 trials of semaglutide, a glucagon-like peptide-1 receptor agonist, in patients with the obesity HFpEF phenotype: STEP-HFpEF (Semaglutide Treatment Effect in People with obesity and HFpEF; NCT04788511) and STEP-HFpEF DM (Semaglutide Treatment Effect in People with obesity and HFpEF and type 2 diabetes; NCT04916470). Methods: Both STEP-HFpEF and STEP-HFpEF DM are international multicenter, double-blind, placebo-controlled trials that randomized adults with HFpEF and a body mass index ≥30 kg/m2 to once-weekly semaglutide at a dose of 2.4 mg or placebo. Participants were eligible if they had a left ventricular ejection fraction (LVEF) ≥45%; New York Heart Association (NYHA) functional class II to IV; a Kansas City Cardiomyopathy Questionnaire (KCCQ)–Clinical Summary Score (CSS) <90 points; and ≥1 of the following: elevated filling pressures, elevated natriuretic peptides plus structural echocardiographic abnormalities, recent heart failure hospitalization plus ongoing diuretic use, and/or structural abnormalities. The dual primary endpoints are the 52-week change in the KCCQ-CSS and body weight. Results: In STEP-HFpEF and STEP-HFpEF DM (N = 529 and N = 617, respectively), nearly half were women, and most had severe obesity (median body mass index of 37 kg/m2) with typical features of HFpEF (median LVEF of 57%, frequent comorbidities, and elevated natriuretic peptides). Most participants received diuretic agents and renin-angiotensin blockers at baseline, and approximately one-third were on mineralocorticoid receptor antagonists. Sodium-glucose cotransporter-2 inhibitor use was rare in STEP-HFpEF but not in STEP HFpEF DM (32%). Patients in both trials had marked symptomatic and functional impairments (KCCQ-CSS ∼59 points, 6-minute walking distance ∼300 m). Conclusions: In total, STEP-HFpEF program randomized 1,146 participants with the obesity phenotype of HFpEF and will determine whether semaglutide improves symptoms, physical limitations, and exercise function in addition to weight loss in this vulnerable group
    corecore