18 research outputs found

    Evaluation of the effect of ultrasonic degassing on components produced by low pressure die casting

    Get PDF
    Ultrasonic processing is known to be an efficient means of aluminium melt degassing with additional benefits of being economical and environment friendly. This paper describes the performance of ultrasonic degassing in preparing melt for low pressure die casting (LPDC). Efficiency of ultrasonic degassing is compared with conventional Ar rotary degassing by direct measurements of hydrogen concentration in the melt with a Foseco Alspek-H probe and by reduced pressure test in different stages of the casting process. Significant reduction in dross formation along with similar efficiency of hydrogen degassing was shown for ultrasonic degassing as compared with conventional Ar rotary degassing. Mechanical properties, microstructure and porosity level of the components produced by LPDC after both degassing techniques are determined. Results show that the components produced after ultrasonic degassing treatment have similar hardness, tensile properties, porosity level and microstructure as the components degassed with conventional Ar rotary degassing.The European Union’s Seventh Framework Program managed by the Research Executive Agency (REA;FP7/2007–2013) under grant agreement number 286344 (www.ultragassing.eu)

    Effects of resuscitation with crystalloid fluids on cardiac function in patients with severe sepsis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The use of hypertonic crystalloid solutions, including sodium chloride and bicarbonate, for treating severe sepsis has been much debated in previous investigations. We have investigated the effects of three crystalloid solutions on fluid resuscitation in severe sepsis patients with hypotension.</p> <p>Methods</p> <p>Ninety-four severe sepsis patients with hypotension were randomly assigned to three groups. The patients received the following injections within 15 min at initial treatment: Ns group (n = 32), 5 ml/kg normal saline; Hs group (n = 30), with 5 ml/kg 3.5% sodium chloride; and Sb group (n = 32), 5 ml/kg 5% sodium bicarbonate. Cardiac output (CO), systolic blood pressure, mean arterial pressure (MAP), body temperature, heart rate, respiratory rate and blood gases were measured.</p> <p>Results</p> <p>There were no differences among the three groups in CO, MAP, heart rate or respiratory rate during the 120 min trial or the 8 hour follow-up, and no significant differences in observed mortality rate after 28 days. However, improvement of MAP and CO started earlier in the Sb group than in the Ns and Hs groups. Sodium bicarbonate increased the base excess but did not alter blood pH, lactic acid or [HCO<sub>3</sub>]<sup>- </sup>values; and neither 3.5% hypertonic saline nor 5% sodium bicarbonate altered the Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+ </sup>or Cl<sup>- </sup>levels.</p> <p>Conclusion</p> <p>All three crystalloid solutions may be used for initial volume loading in severe sepsis, and sodium bicarbonate confers a limited benefit on humans with severe sepsis.</p> <p>Trial registration</p> <p>ISRCTN36748319.</p

    Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite

    Get PDF
    The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum

    Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53

    No full text
    Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear(1,2). The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event(3). To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a BRAF(V600E) mouse model. In mice expressing BRAF(V600E) in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. Here we show that sunscreen (UVA superior, UVB sun protection factor (SPF) 50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours showed increased numbers of single nucleotide variants and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in approximately 40% of cases. TP53 is an accepted UVR target in human non-melanoma skin cancer, but is not thought to have a major role in melanoma(4). However, we show that, in mice, mutant Trp53 accelerated BRAF(V600E)-driven melanomagenesis, and that TP53 mutations are linked to evidence of UVR-induced DNA damage inhuman melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans(5). Furthermore, we identify TP53/Trp53 as a UVR-target gene that cooperates with BRAF(V600E) to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma
    corecore