18 research outputs found
Evaluation of the effect of ultrasonic degassing on components produced by low pressure die casting
Ultrasonic processing is known to be an efficient means of aluminium melt degassing with additional benefits of being economical and environment friendly. This paper describes the performance of ultrasonic degassing in preparing melt for low pressure die casting (LPDC). Efficiency of ultrasonic degassing is compared with conventional Ar rotary degassing by direct measurements of hydrogen concentration in the melt with a Foseco Alspek-H probe and by reduced pressure test in different stages of the casting process. Significant reduction in dross formation along with similar efficiency of hydrogen degassing was shown for ultrasonic degassing as compared with conventional Ar rotary degassing. Mechanical properties, microstructure and porosity level of the components produced by LPDC after both degassing techniques are determined. Results show that the components produced after ultrasonic degassing treatment have similar hardness, tensile properties, porosity level and microstructure as the components degassed with conventional Ar rotary degassing.The European Union’s Seventh Framework Program managed by the Research Executive Agency (REA;FP7/2007–2013) under grant agreement number 286344 (www.ultragassing.eu)
Recommended from our members
Investigating the impact of poverty on colonization and infection with drug-resistant organisms in humans: a systematic review
Background
Poverty increases the risk of contracting infectious diseases and therefore exposure to antibiotics. Yet there is lacking evidence on the relationship between income and non-income dimensions of poverty and antimicrobial resistance. Investigating such relationship would strengthen antimicrobial stewardship interventions.
Methods
A systematic review was conducted following Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. PubMed, Ovid, MEDLINE, EMBASE, Scopus, CINAHL, PsychINFO, EBSCO, HMIC, and Web of Science databases were searched in October 2016. Prospective and retrospective studies reporting on income or non-income dimensions of poverty and their influence on colonisation or infection with antimicrobial-resistant organisms were retrieved. Study quality was assessed with the Integrated quality criteria for review of multiple study designs (ICROMS) tool.
Results
Nineteen articles were reviewed. Crowding and homelessness were associated with antimicrobial resistance in community and hospital patients. In high-income countries, low income was associated with Streptococcus pneumoniae and Acinetobacter baumannii resistance and a seven-fold higher infection rate. In low-income countries the findings on this relation were contradictory. Lack of education was linked to resistant S. pneumoniae and Escherichia coli. Two papers explored the relation between water and sanitation and antimicrobial resistance in low-income settings.
Conclusions
Despite methodological limitations, the results suggest that addressing social determinants of poverty worldwide remains a crucial yet neglected step towards preventing antimicrobial resistance
Recommended from our members
What are the factors driving antimicrobial resistance? Perspectives from a public event in London, England.
BACKGROUND: Antimicrobial resistance is driven by multiple factors. Resolving the threat to human and animal health presented by drug-resistant infections remains a societal challenge that demands close collaboration between scientists and citizens. We compared current public views about key contributing factors to antimicrobial resistance with those expressed by experts.
METHODS: Overarching factors contributing to antimicrobial resistance were identified following a review of literature. The factors were then described in plain language and attached to ballot boxes at a public engagement event organised by a university. Responses to each factor were counted at the end of the event.
RESULTS: Four hundred five responses were received from 3750 visitors (11 % response rate). Nearly half of responses (192/405, 47 · 4 %) considered the misuse/overuse of antibiotics in humans as the main determinant of antimicrobial resistance. The misuse of antibiotics in animal health obtained 16 · 3 % (66/405) responses. However, the lack of quick tests to diagnose infections received 10/405 votes (2 · 47 %), and the lack of effective vaccines received one vote (0 · 25 %).
CONCLUSIONS: The majority of responses ascribed the emergence of drug-resistant infections to the misuse of antibiotics in human and animals. Suboptimal dosing, availability of diagnostics and environmental contamination were considered less influential on the development of antimicrobial resistance. The growing recognition of broader multifaceted drivers of drug resistance by experts is not yet echoed in the public mind
Effects of resuscitation with crystalloid fluids on cardiac function in patients with severe sepsis
<p>Abstract</p> <p>Background</p> <p>The use of hypertonic crystalloid solutions, including sodium chloride and bicarbonate, for treating severe sepsis has been much debated in previous investigations. We have investigated the effects of three crystalloid solutions on fluid resuscitation in severe sepsis patients with hypotension.</p> <p>Methods</p> <p>Ninety-four severe sepsis patients with hypotension were randomly assigned to three groups. The patients received the following injections within 15 min at initial treatment: Ns group (n = 32), 5 ml/kg normal saline; Hs group (n = 30), with 5 ml/kg 3.5% sodium chloride; and Sb group (n = 32), 5 ml/kg 5% sodium bicarbonate. Cardiac output (CO), systolic blood pressure, mean arterial pressure (MAP), body temperature, heart rate, respiratory rate and blood gases were measured.</p> <p>Results</p> <p>There were no differences among the three groups in CO, MAP, heart rate or respiratory rate during the 120 min trial or the 8 hour follow-up, and no significant differences in observed mortality rate after 28 days. However, improvement of MAP and CO started earlier in the Sb group than in the Ns and Hs groups. Sodium bicarbonate increased the base excess but did not alter blood pH, lactic acid or [HCO<sub>3</sub>]<sup>- </sup>values; and neither 3.5% hypertonic saline nor 5% sodium bicarbonate altered the Na<sup>+</sup>, K<sup>+</sup>, Ca<sup>2+ </sup>or Cl<sup>- </sup>levels.</p> <p>Conclusion</p> <p>All three crystalloid solutions may be used for initial volume loading in severe sepsis, and sodium bicarbonate confers a limited benefit on humans with severe sepsis.</p> <p>Trial registration</p> <p>ISRCTN36748319.</p
Pervasive antibiotic misuse in the Cambodian community: antibiotic-seeking behaviour with unrestricted access
Abstract Background Antibiotic misuse is widespread in resource-limited countries such as Cambodia where the burden of infectious diseases is high and access to antibiotics is unrestricted. We explored healthcare seeking behaviour related to obtaining antibiotics and drivers of antibiotic misuse in the Cambodian community. Methods In-depth interviews were held with family members of patients being admitted in hospitals and private pharmacies termed pharmacy attendants in the catchment areas of the hospitals. Nurses who run community primary healthcare centres located within the hospital catchment areas were invited to attend focus group discussions. Nvivo version 10 was used to code and manage thematic data analysis. Results We conducted individual interviews with 35 family members, 7 untrained pharmacy attendants and 3 trained pharmacists and 6 focus group discussions with 30 nurses. Self-medication with a drug-cocktail was widespread and included broad-spectrum antibiotics for mild illness. Unrestricted access to antibiotics was facilitated by various community enablers including pharmacies or drug outlets, nurse suppliers and unofficial village medical providers referred to as “village Pett” whose healthcare training has historically been in the field and not at university. These enablers supplied the community with various types of antibiotics including broad spectrum fluoroquinolones and cephalosporins. When treatment was perceived to be ineffective patients would prescriber-shop various suppliers who would unfailingly provide them with antibiotics. The main driver of the community’s demand for antibiotics was a mistaken belief in the benefits of antibiotics for a common cold, high temperature, pain, malaria and ‘Roleak’ which includes a broad catch-all for perceived inflammatory conditions. For severe illnesses, patients would attend a community healthcare centre, hospital, or when their finances permitted, a private prescriber. Conclusions Pervasive antibiotic misuse was driven by a habitual supplier-seeking behaviour that was enabled by unrestricted access and misconceptions about antibiotics for mild illnesses. Unofficial suppliers must be stopped by supporting existing regulations with tough new laws aimed at outlawing supplies outside registered pharmacies and fining registered pharmacist/owners of these pharmacies for supplying antibiotics without a prescription. Community primary healthcare centres must be strengthened to become the frontline antibiotic prescribers in the community thereby enabling the community’s access to inexpensive and appropriate healthcare. Community-based education program should target appropriate health-seeking pathways and the serious consequences of antibiotic misuse
Identification and Genome-Wide Prediction of DNA Binding Specificities for the ApiAP2 Family of Regulators from the Malaria Parasite
The molecular mechanisms underlying transcriptional regulation in apicomplexan parasites remain poorly understood. Recently, the Apicomplexan AP2 (ApiAP2) family of DNA binding proteins was identified as a major class of transcriptional regulators that are found across all Apicomplexa. To gain insight into the regulatory role of these proteins in the malaria parasite, we have comprehensively surveyed the DNA-binding specificities of all 27 members of the ApiAP2 protein family from Plasmodium falciparum revealing unique binding preferences for the majority of these DNA binding proteins. In addition to high affinity primary motif interactions, we also observe interactions with secondary motifs. The ability of a number of ApiAP2 proteins to bind multiple, distinct motifs significantly increases the potential complexity of the transcriptional regulatory networks governed by the ApiAP2 family. Using these newly identified sequence motifs, we infer the trans-factors associated with previously reported plasmodial cis-elements and provide evidence that ApiAP2 proteins modulate key regulatory decisions at all stages of parasite development. Our results offer a detailed view of ApiAP2 DNA binding specificity and take the first step toward inferring comprehensive gene regulatory networks for P. falciparum
Ultraviolet radiation accelerates BRAF-driven melanomagenesis by targeting TP53
Cutaneous melanoma is epidemiologically linked to ultraviolet radiation (UVR), but the molecular mechanisms by which UVR drives melanomagenesis remain unclear(1,2). The most common somatic mutation in melanoma is a V600E substitution in BRAF, which is an early event(3). To investigate how UVR accelerates oncogenic BRAF-driven melanomagenesis, we used a BRAF(V600E) mouse model. In mice expressing BRAF(V600E) in their melanocytes, a single dose of UVR that mimicked mild sunburn in humans induced clonal expansion of the melanocytes, and repeated doses of UVR increased melanoma burden. Here we show that sunscreen (UVA superior, UVB sun protection factor (SPF) 50) delayed the onset of UVR-driven melanoma, but only provided partial protection. The UVR-exposed tumours showed increased numbers of single nucleotide variants and we observed mutations (H39Y, S124F, R245C, R270C, C272G) in the Trp53 tumour suppressor in approximately 40% of cases. TP53 is an accepted UVR target in human non-melanoma skin cancer, but is not thought to have a major role in melanoma(4). However, we show that, in mice, mutant Trp53 accelerated BRAF(V600E)-driven melanomagenesis, and that TP53 mutations are linked to evidence of UVR-induced DNA damage inhuman melanoma. Thus, we provide mechanistic insight into epidemiological data linking UVR to acquired naevi in humans(5). Furthermore, we identify TP53/Trp53 as a UVR-target gene that cooperates with BRAF(V600E) to induce melanoma, providing molecular insight into how UVR accelerates melanomagenesis. Our study validates public health campaigns that promote sunscreen protection for individuals at risk of melanoma