2,437 research outputs found
Corner contributions to holographic entanglement entropy
The entanglement entropy of three-dimensional conformal field theories
contains a universal contribution coming from corners in the entangling
surface. We study these contributions in a holographic framework and, in
particular, we consider the effects of higher curvature interactions in the
bulk gravity theory. We find that for all of our holographic models, the corner
contribution is only modified by an overall factor but the functional
dependence on the opening angle is not modified by the new gravitational
interactions. We also compare the dependence of the corner term on the new
gravitational couplings to that for a number of other physical quantities, and
we show that the ratio of the corner contribution over the central charge
appearing in the two-point function of the stress tensor is a universal
function for all of the holographic theories studied here. Comparing this
holographic result to the analogous functions for free CFT's, we find fairly
good agreement across the full range of the opening angle. However, there is a
precise match in the limit where the entangling surface becomes smooth, i.e.,
the angle approaches , and we conjecture the corresponding ratio is a
universal constant for all three-dimensional conformal field theories. In this
paper, we expand on the holographic calculations in our previous letter
arXiv:1505.04804, where this conjecture was first introduced.Comment: 62 pages, 6 figures, 1 table; v2: minor modifications to match
published version, typos fixe
The group structure of non-Abelian NS-NS transformations
We study the transformations of the worldvolume fields of a system of
multiple coinciding D-branes under gauge transformations of the supergravity
Kalb-Ramond field. We find that the pure gauge part of these NS-NS
transformations can be written as a U(N) symmetry of the underlying Yang-Mills
group, but that in general the full NS-NS variations get mixed up non-trivially
with the U(N). We compute the commutation relations and the Jacobi identities
of the bigger group formed by the NS-NS and U(N) transformations.Comment: Latex, 11 pages. v2: Typos corrected; version to appear in JHEP
Secondary user relations in emerging mobile computing environments
Mobile technologies are enabling access to information in diverse environ.ments, and are exposing a wider group of individuals to said technology. Therefore, this paper proposes that a wider view of user relations than is usually considered in information systems research is required. Specifically, we examine the potential effects of emerging mobile technologies on end-‐user relations with a focus on the ‘secondary user’, those who are not intended to interact directly with the technology but are intended consumers of the technology’s output. For illustration, we draw on a study of a U.K. regional Fire and Rescue Service and deconstruct mobile technology use at Fire Service incidents. Our findings provide insights, which suggest that, because of the nature of mobile technologies and their context of use, secondary user relations in such emerging mobile environments are important and need further exploration
Plasma photoemission from string theory
Leading 't Hooft coupling corrections to the photoemission rate of the planar
limit of a strongly-coupled {\cal {N}}=4 SYM plasma are investigated using the
gauge/string duality. We consider the full order \alpha'^3 type IIB string
theory corrections to the supergravity action, including higher order terms
with the Ramond-Ramond five-form field strength. We extend our previous results
presented in arXiv:1110.0526. Photoemission rates depend on the 't Hooft
coupling, and their curves suggest an interpolating behaviour from strong
towards weak coupling regimes. Their slopes at zero light-like momentum give
the electrical conductivity as a function of the 't Hooft coupling, in full
agreement with our previous results of arXiv:1108.6306. Furthermore, we also
study the effect of corrections beyond the large N limit.Comment: 36 pages, 5 figures, paragraph added in the conclusions, references
added, typos correcte
ABJM Baryon Stability and Myers effect
We consider magnetically charged baryon vertex like configurations in AdS^4 X
CP^3 with a reduced number of quarks l. We show that these configurations are
solutions to the classical equations of motion and are stable beyond a critical
value of l. Given that the magnetic flux dissolves D0-brane charge it is
possible to give a microscopical description in terms of D0-branes expanding
into fuzzy CP^n spaces by Myers dielectric effect. Using this description we
are able to explore the region of finite 't Hooft coupling.Comment: 29 pages, Latex; minor changes; version to appear in JHE
Interaction between M2-branes and Bulk Form Fields
We construct the interaction terms between the world-volume fields of
multiple M2-branes and the 3- and 6-form fields in the context of ABJM theory
with U()U() gauge symmetry. A consistency check is made in the
simplest case of a single M2-brane, i.e, our construction matches the known
effective action of M2-brane coupled to antisymmetric 3-form field. We show
that when dimensionally reduced, our couplings coincide with the effective
action of D2-branes coupled to R-R 3- and 5-form fields in type IIA string
theory. We also comment on the relation between a coupling with a specific
6-form field configuration and the supersymmetry preserving mass deformation in
ABJM theory.Comment: 30 pages, version to appear in JHE
Biodiversity Loss and the Taxonomic Bottleneck: Emerging Biodiversity Science
Human domination of the Earth has resulted in dramatic changes to global and local patterns of biodiversity. Biodiversity is critical to human sustainability because it drives the ecosystem services that provide the core of our life-support system. As we, the human species, are the primary factor leading to the decline in biodiversity, we need detailed information about the biodiversity and species composition of specific locations in order to understand how different species contribute to ecosystem services and how humans can sustainably conserve and manage biodiversity. Taxonomy and ecology, two fundamental sciences that generate the knowledge about biodiversity, are associated with a number of limitations that prevent them from providing the information needed to fully understand the relevance of biodiversity in its entirety for human sustainability: (1) biodiversity conservation strategies that tend to be overly focused on research and policy on a global scale with little impact on local biodiversity; (2) the small knowledge base of extant global biodiversity; (3) a lack of much-needed site-specific data on the species composition of communities in human-dominated landscapes, which hinders ecosystem management and biodiversity conservation; (4) biodiversity studies with a lack of taxonomic precision; (5) a lack of taxonomic expertise and trained taxonomists; (6) a taxonomic bottleneck in biodiversity inventory and assessment; and (7) neglect of taxonomic resources and a lack of taxonomic service infrastructure for biodiversity science. These limitations are directly related to contemporary trends in research, conservation strategies, environmental stewardship, environmental education, sustainable development, and local site-specific conservation. Today’s biological knowledge is built on the known global biodiversity, which represents barely 20% of what is currently extant (commonly accepted estimate of 10 million species) on planet Earth. Much remains unexplored and unknown, particularly in hotspots regions of Africa, South Eastern Asia, and South and Central America, including many developing or underdeveloped countries, where localized biodiversity is scarcely studied or described. ‘‘Backyard biodiversity’’, defined as local biodiversity near human habitation, refers to the natural resources and capital for ecosystem services at the grassroots level, which urgently needs to be explored, documented, and conserved as it is the backbone of sustainable economic development in these countries. Beginning with early identification and documentation of local flora and fauna, taxonomy has documented global biodiversity and natural history based on the collection of ‘‘backyard biodiversity’’ specimens worldwide. However, this branch of science suffered a continuous decline in the latter half of the twentieth century, and has now reached a point of potential demise. At present there are very few professional taxonomists and trained local parataxonomists worldwide, while the need for, and demands on, taxonomic services by conservation and resource management communities are rapidly increasing. Systematic collections, the material basis of biodiversity information, have been neglected and abandoned, particularly at institutions of higher learning. Considering the rapid increase in the human population and urbanization, human sustainability requires new conceptual and practical approaches to refocusing and energizing the study of the biodiversity that is the core of natural resources for sustainable development and biotic capital for sustaining our life-support system. In this paper we aim to document and extrapolate the essence of biodiversity, discuss the state and nature of taxonomic demise, the trends of recent biodiversity studies, and suggest reasonable approaches to a biodiversity science to facilitate the expansion of global biodiversity knowledge and to create useful data on backyard biodiversity worldwide towards human sustainability
Geometry of open strings ending on backreacting D3-branes
We investigate open string theory on backreacting D3-branes using a spacetime
approach. We study in detail the half-BPS supergravity solutions describing
open strings ending on D3-branes, in the near horizon of the D3-branes. We
recover quantitatively several non-trivial features of open string physics
including the appearance of D3-brane spikes, the polarization of fundamental
strings into D5-branes, and the Hanany-Witten effect. Finally we detail the
computation of the gravitational potential between two open strings, and
contrast it with the holographic computation of Wilson lines. We argue that the
D-brane backreaction has a large influence on the low-energy gravity, which may
lead to experimental tests for string theory brane-world scenarios.Comment: 64 pages, 20 figure
Holographic Anyons in the ABJM Theory
We consider the holographic anyons in the ABJM theory from three different
aspects of AdS/CFT correspondence. First, we identify the holographic anyons by
using the field equations of supergravity, including the Chern-Simons terms of
the probe branes. We find that the composite of Dp-branes wrapped over CP3 with
the worldvolume magnetic fields can be the anyons. Next, we discuss the
possible candidates of the dual anyonic operators on the CFT side, and find the
agreement of their anyonic phases with the supergravity analysis. Finally, we
try to construct the brane profile for the holographic anyons by solving the
equations of motion and Killing spinor equations for the embedding profile of
the wrapped branes. As a by product, we find a BPS spiky brane for the dual
baryons in the ABJM theory.Comment: 1+33 pages, 3 figures; v2 discussion for D4-D6 case added, references
added; v3 comments adde
On effective actions of BPS branes and their higher derivative corrections
We calculate in detail the disk level S-matrix element of one Ramond-Ramond
field and three gauge field vertex operators in the world volume of BPS branes,
to find four gauge field couplings to all orders of up to on-shell
ambiguity. Then using these infinite couplings we find that the massless pole
of the field theory amplitude is exactly equal to the massless pole S-matrix
element of this amplitude for the case to all orders of .
Finally we show that the infinite massless poles and the contact terms of this
amplitude for the case can be reproduced by the Born-Infeld action and
the Wess-Zumino actions and by their higher derivative corrections.Comment: 26 pages, 2 figures, minor corrections,references added and version
published in JHE
- …
