1,332 research outputs found

    Prelimbic cortex maintains attention to category-relevant information and flexibly updates category representations

    Get PDF
    Category learning groups stimuli according to similarity or function. This involves finding and attending to stimulus features that reliably inform category membership. Although many of the neural mechanisms underlying categorization remain elusive, models of human category learning posit that prefrontal cortex plays a substantial role. Here, we investigated the role of the prelimbic cortex (PL) in rat visual category learning by administering excitotoxic lesions before category training and then evaluating the effects of the lesions with computational modeling. Using a touchscreen apparatus, rats (female and male) learned to categorize distributions of category stimuli that varied along two continuous dimensions. For some rats, categorizing the stimuli encouraged selective attention towards a single stimulus dimension (i.e., 1D tasks). For other rats, categorizing the stimuli required divided attention towards both stimulus dimensions (i.e., 2D tasks). Testing sessions then examined generalization to novel exemplars. PL lesions impaired learning and generalization for the 1D tasks, but not the 2D tasks. Then, a neural network was fit to the behavioral data to examine how the lesions affected categorization. The results suggest that the PL facilitates category learning by maintaining attention to category-relevant information and updating category representations

    Selective attention in rat visual category learning

    Get PDF
    A prominent theory of category learning, COVIS, posits that new categories are learned with either a declarative or procedural system, depending on the task. The declarative system uses the prefrontal cortex (PFC) to learn rule-based (RB) category tasks in which there is one relevant sensory dimension that can be used to establish a rule for solving the task, whereas the procedural system uses corticostriatal circuits for information integration (II) tasks in which there are multiple relevant dimensions, precluding use of explicit rules. Previous studies have found faster learning of RB versus II tasks in humans and monkeys but not in pigeons. The absence of a learning rate difference in pigeons has been attributed to their lacking a PFC. A major gap in this comparative analysis, however, is the lack of data from a nonprimate mammalian species, such as rats, that have a PFC but a less differentiated PFC than primates. Here, we investigated RB and II category learning in rats. Similar to pigeons, RB and II tasks were learned at the same rate. After reaching a learning criterion, wider distributions of stimuli were presented to examine generalization. A second experiment found equivalent RB and II learning with wider category distributions. Computational modeling revealed that rats extract and selectively attend to category-relevant information but do not consistently use rules to solve the RB task. These findings suggest rats are on a continuum of PFC function between birds and primates, with selective attention but limited ability to utilize rules relative to primates

    Selective attention in rat visual category learning

    Get PDF
    A prominent theory of category learning, COVIS, posits that new categories are learned with either a declarative or procedural system, depending on the task. The declarative system uses the prefrontal cortex (PFC) to learn rule-based (RB) category tasks in which there is one relevant sensory dimension that can be used to establish a rule for solving the task, whereas the procedural system uses corticostriatal circuits for information integration (II) tasks in which there are multiple relevant dimensions, precluding use of explicit rules. Previous studies have found faster learning of RB versus II tasks in humans and monkeys but not in pigeons. The absence of a learning rate difference in pigeons has been attributed to their lacking a PFC. A major gap in this comparative analysis, however, is the lack of data from a nonprimate mammalian species, such as rats, that have a PFC but a less differentiated PFC than primates. Here, we investigated RB and II category learning in rats. Similar to pigeons, RB and II tasks were learned at the same rate. After reaching a learning criterion, wider distributions of stimuli were presented to examine generalization. A second experiment found equivalent RB and II learning with wider category distributions. Computational modeling revealed that rats extract and selectively attend to category-relevant information but do not consistently use rules to solve the RB task. These findings suggest rats are on a continuum of PFC function between birds and primates, with selective attention but limited ability to utilize rules relative to primates

    Skin friction blistering: computer model

    Full text link
    BACKGROUND/PURPOSE: Friction blisters, a common injury in sports and military operations, can adversely effect or even halt performance. Given its frequency and hazardous nature, recent research efforts appear limited. Blistering can be treated as a delamination phenomenon; similar issues in materials science have been extensively investigated in theory and experiment. An obstacle in studying blistering is the difficulty of conducting experiment on humans and animals. Computer modeling thus becomes a preferred tool. METHOD: This paper used a dynamic non-linear finite-element model with a blister-characterized structure and contact algorithm for outer materials and blister roof to investigate the effects on deformation and stress of an existing blister by changing the friction coefficient and elastic modulus of the material in contact with the blister. RESULTS: Through the dynamics mode and harmonic frequency approach, we demonstrated that the loading frequency leads to dramatic changes of displacement and stress in spite of otherwise similar loading. Our simulations show that an increased friction coefficient does not necessarily result in an increase in either the stress on the hot spot or blister deformation; local maximum friction stress and Von Mises stress exist for some friction coefficients over the wide range examined here. In addition, the stiffness of contact material on blistering is also investigated, and no significant effects on deformation and Von Mises stress are found, again at the range used. The model and method provided here may be useful for evaluating loading environments and contact materials in reducing blistering incidents. CONCLUSION: The coupling finite-element model can predict the effects of friction coefficient and contacting materials' stiffness on blister deformation and hot spot stress

    The Escherichia coli transcriptome mostly consists of independently regulated modules

    Get PDF
    Underlying cellular responses is a transcriptional regulatory network (TRN) that modulates gene expression. A useful description of the TRN would decompose the transcriptome into targeted effects of individual transcriptional regulators. Here, we apply unsupervised machine learning to a diverse compendium of over 250 high-quality Escherichia coli RNA-seq datasets to identify 92 statistically independent signals that modulate the expression of specific gene sets. We show that 61 of these transcriptomic signals represent the effects of currently characterized transcriptional regulators. Condition-specific activation of signals is validated by exposure of E. coli to new environmental conditions. The resulting decomposition of the transcriptome provides: a mechanistic, systems-level, network-based explanation of responses to environmental and genetic perturbations; a guide to gene and regulator function discovery; and a basis for characterizing transcriptomic differences in multiple strains. Taken together, our results show that signal summation describes the composition of a model prokaryotic transcriptome

    Marine macroalgae as food for earthworms: Growth and selection experiments across ecotypes

    Get PDF
    Historically, subsistence farmers around the Atlantic coast of NW Europe utilised marine algae as a fertiliser in agroecosystems, a practice that continued in small areas and is now considered to have real potential for re-establishing sustainable food production systems on marginal soils. Earthworms form a significant component of soil fauna and their ecosystem services are well documented. Therefore, palatability of marine organic amendments to faunal detritivores of terrestrial systems is of interest. This work aimed to assess the potential for growth of Aporrectodea caliginosa, Lumbricus rubellus and Aporrectodea longa fed with two common macroalgae (seaweeds), Laminaria digitata and Fucus serratus. In addition, choice chambers were constructed to permit earthworm selection of these macroalgae with more conventional organic materials, horse manure (HM) and birch leaves (BL). Over a period of two months, earthworm species showed significantly greater mass gain with conventional food (p<0.05). Laminaria outperformed Fucus, which in turn was superior to soil alone. Similarly, when given a choice, a significant preference (p<0.001) was shown for the more nitrogen-rich HM and BL over the seaweeds. No removal was recorded for A. caliginosa when offered seaweeds only. By contrast, L. rubellus and A. longa showed significant preferences (p<0.001) for Laminaria over Fucus and fresh material over degraded. These results underline an interest to profit from natural resources (seaweeds) to maintain or improve soil biological quality in marginal coastal areas

    Genetic determinants of co-accessible chromatin regions in activated T cells across humans.

    Get PDF
    Over 90% of genetic variants associated with complex human traits map to non-coding regions, but little is understood about how they modulate gene regulation in health and disease. One possible mechanism is that genetic variants affect the activity of one or more cis-regulatory elements leading to gene expression variation in specific cell types. To identify such cases, we analyzed ATAC-seq and RNA-seq profiles from stimulated primary CD4+ T cells in up to 105 healthy donors. We found that regions of accessible chromatin (ATAC-peaks) are co-accessible at kilobase and megabase resolution, consistent with the three-dimensional chromatin organization measured by in situ Hi-C in T cells. Fifteen percent of genetic variants located within ATAC-peaks affected the accessibility of the corresponding peak (local-ATAC-QTLs). Local-ATAC-QTLs have the largest effects on co-accessible peaks, are associated with gene expression and are enriched for autoimmune disease variants. Our results provide insights into how natural genetic variants modulate cis-regulatory elements, in isolation or in concert, to influence gene expression
    • 

    corecore