39 research outputs found

    Модернізація стоматологічної установки УС- 30

    Get PDF
    Background: The novel chemokine CXCL17 acts as chemoattractant for monocytes, macrophages and dendritic cells. CXCL17 also has a role in angiogenesis of importance for tumour development. Methods: Expression of CXCL17, CXCL10, CXCL9 and CCL2 was assessed in primary colon cancer tumours, colon carcinoma cell lines and normal colon tissue at mRNA and protein levels by real-time qRT-PCR, immunohistochemistry, two-colour immunofluorescence and immunomorphometry. Results: CXCL17 mRNA was expressed at 8000 times higher levels in primary tumours than in normal colon (P<0.0001). CXCL17 protein was seen in 17.2% of cells in tumours as compared with 0.07% in normal colon (P = 0.0002). CXCL10, CXCL9 and CCL2 mRNAs were elevated in tumours but did not reach the levels of CXCL17. CXCL17 and CCL2 mRNA levels were significantly correlated in tumours. Concordant with the mRNA results, CXCL10-and CXCL9-positive cells were detected in tumour tissue, but at significantly lower numbers than CXCL17. Two-colour immunofluorescence and single-colour staining of consecutive sections for CXCL17 and the epithelial cell markers carcinoembryonic antigen and BerEP4 demonstrated that colon carcinoma tumour cells indeed expressed CXCL17. Conclusions: CXCL17 is ectopically expressed in primary colon cancer tumours. As CXCL17 enhances angiogenesis and attracts immune cells, its expression could be informative for prognosis in colon cancer patients

    Spectrum and antibiotic sensitivity of bacteria contaminating the upper gut in patients with malabsorption syndrome from the tropics

    Get PDF
    BACKGROUND: Various causes of malabsorption syndrome (MAS) are associated with intestinal stasis that may cause small intestinal bacterial overgrowth (SIBO). Frequency, nature and antibiotic sensitivity of SIBO in patients with MAS are not well understood. METHODS: Jejunal aspirates of 50 consecutive patients with MAS were cultured for bacteria and colony counts and antibiotic sensitivity were performed. Twelve patients with irritable bowel syndrome were studied as controls. RESULTS: Culture revealed growth of bacteria in 34/50 (68%) patients with MAS and 3/12 controls (p < 0.05). Colony counts ranged from 3 × 10(2 )to 10(15 )(median 10(5)) in MAS and 100 to 1000 (median 700) CFU/ml in controls (p 0.003). 21/50 (42%) patients had counts ≥10(5 )CFU/ml in MAS and none of controls (p < 0.05). Aerobes were isolated in 34/34 and anaerobe in 1/34. Commonest Gram positive and negative bacteria were Streptococcus species and Escherichia coli respectively. The isolated bacteria were more often sensitive to quinolones than to tetracycline (ciprofloxacin: 39/47 and norfloxacin: 34/47 vs. tetracycline 19/47, <0.01), ampicillin, erythromycin and co-trimoxazole (21/44, 14/22 and 24/47 respectively vs. tetracycline, p = ns). CONCLUSIONS: SIBO is common in patients with MAS due to various causes and quinolones may be the preferred treatment. This needs to be proved further by a randomized controlled trial

    Analysis of single nucleotide polymorphism in the promoter and protein expression of the chemokine Eotaxin-1 in colorectal cancer patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Previous studies suggest that chemokines (chemotactic cytokines) promote and regulate neoplastic progression including metastasis and angiogenesis. The chemokine eotaxin-1 is a powerful eosinophil attractant but also exerts chemotaxis of other leukocytes. Eotaxin-1 has been implicated in gastrointestinal disorders and may play an important role in colorectal mucosal immunity.</p> <p>Patients and methods</p> <p>The objective of this study was to assess the role of eotaxin-1 in colorectal cancer (CRC). Levels of eotaxin-1 protein in CRC tissues (n = 86) and paired normal mucosa were compared after determination by ELISA. Plasma eotaxin-1 levels from CRC patients (n = 67) were also compared with controls (n = 103) using the same method. Moreover, a TaqMan system was used to evaluate the -384A>G eotaxin-1 gene variant in CRC patients (n = 241) and in a control group (n = 253).</p> <p>Results</p> <p>Eotaxin-1 protein levels in colorectal tumours were significantly (P < 0.0001) higher than in normal tissue. Immunohistochemistry revealed eotaxin-1 expression in stromal cells such as fibroblasts and leukocytes of the CRC tissue. The plasma eotaxin-1 level in CRC patients was lower compared with controls (P < 0.0001). Patients with tumours classified as Dukes' stage B and C had lower levels than patients with tumours in Dukes' stage A. We found no difference in genotype distribution but noted a difference regarding allele distribution (P = 0.036) and a dominance of allele G in rectal cancer patients.</p> <p>Conclusion</p> <p>The up-regulated eotaxin-1 protein expression in cancer tissue may reflect an eotaxin-1 mediated angiogenesis and/or a recruitment of leukocytes with potential antitumourigenic role. We noticed a dominance of the G allele in rectal cancer patients compared with colon cancer patients that was independent of eotaxin-1 expression.</p

    CXCR4/CXCL12 expression and signalling in kidney cancer

    Get PDF
    CXCL12 (SDF-1), a CXC-chemokine, and its specific receptor, CXCR4, have recently been shown to be involved in tumourgenesis, proliferation and angiogenesis. Therefore, we analysed CXCL12α/CXCR4 expression and function in four human kidney cancer cell lines (A-498, CAKI-1, CAKI-2, HA-7), 10 freshly harvested human tumour samples and corresponding normal kidney tissue. While none of the analysed tumour cell lines expressed CXCL12α, A-498 cells were found to express CXCR4. More importantly, real-time RT–PCR analysis of 10 tumour samples and respective adjacent normal kidney tissue disclosed a distinct and divergent downregulation of CXCL12α and upregulation of CXCR4 in primary tumour tissue. To prove that the CXCR4 protein is functionally active, rhCXCL12α was investigated for its ability to induce changes of intracellular calcium levels in A-498 cells. Moreover, we used cDNA expression arrays to evaluate the biological influence of CXCL12α. Comparing gene expression profiles in rhCXCL12α stimulated vs unstimulated A-498 kidney cancer cells revealed specific regulation of 31 out of 1176 genes tested on a selected human cancer array, with a prominent stimulation of genes involved in cell-cycle regulation and apoptosis. The genetic changes reported here should provide new insights into the developmental paths leading to tumour progression and may also aid the design of new approaches to therapeutic intervention

    Nuclear Localization of CXCR4 Determines Prognosis for Colorectal Cancer Patients

    Get PDF
    Chemokines and their receptors are implicated in formation of colorectal cancer metastases. Especially CXCR4 is an important factor, determining migration, invasiveness, metastasis and proliferation of colorectal cancer cells. Object of this study was to determine expression of CXCR4 in tumor tissue of colorectal cancer patients and associate CXCR4 expression levels to clinicopathological parameters. Levels of CXCR4 expression of a random cohort of patients, who underwent primary curative resection of a colorectal carcinoma, were retrospectively determined by quantitative real-time RT-PCR and semi-quantitative analyses of immunohistochemical stained paraffin sections. Expression levels were associated to clinicopathological parameters. Using RT-PCR we found that a high expression of CXCR4 in the primary tumor was an independent prognostic factor for a poor disease free survival (p = 0.03, HR: 2.0, CI = 1.1–3.7). Immunohistochemical staining showed that nuclear distribution of CXCR4 in the tumor cells was inversely associated with disease free and overall survival (p = 0.04, HR: 2.6, CI = 1.0–6.2), while expression in the cytoplasm was not associated with prognosis. In conclusion, our study showed that a high expression of nuclear localized CXCR4 in tumor cells is an independent predictor for poor survival for colorectal cancer patients

    Cyclophosphamide-Induced Cystitis Increases Bladder CXCR4 Expression and CXCR4-Macrophage Migration Inhibitory Factor Association

    Get PDF
    BACKGROUND: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in cystitis and a non-cognate ligand of the chemokine receptor CXCR4 in vitro. We studied whether CXCR4-MIF associations occur in rat bladder and the effect of experimental cystitis. METHODS AND FINDINGS: Twenty male rats received saline or cyclophosphamide (40 mg/kg; i.p.; every 3(rd) day) to induce persistent cystitis. After eight days, urine was collected and bladders excised under anesthesia. Bladder CXCR4 and CXCR4-MIF co-localization were examined with immunhistochemistry. ELISA determined MIF and stromal derived factor-1 (SDF-1; cognate ligand for CXCR4) levels. Bladder CXCR4 expression (real-time RTC-PCR) and protein levels (Western blotting) were examined. Co-immunoprecipitations studied MIF-CXCR4 associations.Urothelial basal and intermediate (but not superficial) cells in saline-treated rats contained CXCR4, co-localized with MIF. Cyclophosphamide treatment caused: 1) significant redistribution of CXCR4 immunostaining to all urothelial layers (especially apical surface of superficial cells) and increased bladder CXCR4 expression; 2) increased urine MIF with decreased bladder MIF; 3) increased bladder SDF-1; 4) increased CXCR4-MIF associations. CONCLUSIONS: These data demonstrate CXCR4-MIF associations occur in vivo in rat bladder and increase in experimental cystitis. Thus, CXCR4 represents an alternative pathway for MIF-mediated signal transduction during bladder inflammation. In the bladder, MIF may compete with SDF-1 (cognate ligand) to activate signal transduction mediated by CXCR4

    Lysozyme transgenic goats’ milk positively impacts intestinal cytokine expression and morphology

    Get PDF
    In addition to its well-recognized antimicrobial properties, lysozyme can also modulate the inflammatory response. This ability may be particularly important in the gastrointestinal tract where inappropriate inflammatory reactions can damage the intestinal epithelium, leading to significant health problems. The consumption of milk from transgenic goats producing human lysozyme (hLZ) in their milk therefore has the potential to positively impact intestinal health. In order to investigate the effect of hLZ-containing milk on the inflammatory response, young pigs were fed pasteurized milk from hLZ or non-transgenic control goats and quantitative real-time PCR was performed to assess local expression of TNF-α, IL-8, and TGF-β1 in the small intestine. Histological changes were also investigated, specifically looking at villi width, length, crypt depth, and lamina propria thickness along with cell counts for intraepithelial lymphocytes and goblet cells. Significantly higher expression of anti-inflammatory cytokine TGF-β1 was seen in the ileum of pigs fed pasteurized milk containing hLZ (P = 0.0478), along with an increase in intraepithelial lymphocytes (P = 0.0255), and decrease in lamina propria thickness in the duodenum (P = 0.0001). Based on these results we conclude that consuming pasteurized milk containing hLZ does not induce an inflammatory response and improves the health of the small intestine in pigs

    The Interaction of LFA-1 on Mononuclear Cells and ICAM-1 on Tubular Epithelial Cells Accelerates TGF-β1-Induced Renal Epithelial-Mesenchymal Transition

    Get PDF
    The epithelial-mesenchymal transition (EMT) of renal epithelial cells (RTECs) has pivotal roles in the development of renal fibrosis. Although the interaction of lymphocyte function-associated antigen 1 (LFA-1) on leukocytes and its ligand, intracellular adhesion molecule 1 (ICAM-1), plays essential roles in most inflammatory reactions, its pathogenetic role in the EMT of RTECs remains to be clarified. In the present study, we investigated the effect of the interaction of LFA-1 on peripheral blood mononuclear cells (PBMCs) and ICAM-1 on HK-2 cells after stimulation with TGF-β1 on the EMT of RTECs. ICAM-1 was highly expressed in HK-2 cells. After TGF-β1 stimulation, the chemokines CCL3 and CXCL12 increased on HK-2 cells. After co-culture of PBMCs and HK-2 cells pre-stimulated with TGF-β1 (0.1 ng/ml) (HK-2-TGF-β1 (0.1)), the expression of the active form of LFA-1 increased on PBMCs; however, total LFA-1 expression did not change. The expression of the active form of LFA-1 on PBMCs did not increase after co-culture with not CCL3 but CXCL12 knockdown HK-2-TGF-β1 (0.1). The expression of epithelial cell junction markers (E-cadherin and occludin) further decreased and that of mesenchymal markers (vimentin and fibronectin) further increased in HK-2-TGF-β1 (0.1) after co-culture with PBMCs for 24 hrs (HK-2-TGF-β1 (0.1)-PBMCs). The phosphorylation of ERK 1/2 but not smad2 and smad3 increased in HK-2-TGF-β1 (0.1)-PBMCs. The snail and slug signaling did not increase HK-2-TGF-β1 (0.1)-PBMCs. Although the migration and invasion of HK-2 cells induced full EMT by a high dose (10.0 ng/ml) and long-term (72–96 hrs) TGF-β1 stimulation increased, that of HK-2-TGF-β1 (0.1)-PBMCs did not increase. These results suggested that HK-2 cells stimulated with TGF-β1 induced conformational activation of LFA-1 on PBMCs by increased CXCL12. Then, the direct interaction of LFA-1 on PBMCs and ICAM-1 on HK-2 cells activated ERK1/2 signaling to accelerate the part of EMT of HK-2 cells induced by TGF-β1
    corecore