314 research outputs found

    Salivary psoriasin (S100A7) correlates with diffusion capacity of carbon monoxide in a large cohort of systemic sclerosis patients

    Get PDF
    Background: Systemic sclerosis (SSc) is an autoimmune disease characterized by progressive fibrosis of the skin and the internal organs. In a previous work we suggested a correlation between levels of salivary psoriasin (S100A7) and pulmonary involvement in SSc patients. The goals of this study are to determine the distribution characteristics of psoriasin in whole saliva (WS) of SSc and healthy donor populations and define its predictive value on diffusion capacity of carbon monoxide (DLCO), along with others clinical parameters. Methods: Salivary level of psoriasin was determined by ELISA kit in 134 SSc patients, 63 Raynaud syndrome patients, 40 patients affected by other connective diseases (non-case) and 74 healthy control subjects. Results: A significant increase of salivary psoriasin was observed in SSc patients when compared with other healthy and pathological controls. Moreover, we confirmed the efficacy of salivary psoriasin to correlate with DLCO in a large cohort of SSc patients. Conclusions: Overall our results suggest a rapid, non invasive and low costing method which can help clinicians in the evaluation of SSc pulmonary involvement

    Stem Cell Fate and Immunomodulation Promote Bone Regeneration via Composite Bio-Oss®/AviteneTM Biomaterial

    Get PDF
    Bone defects in maxillofacial regions lead to noticeable deformity and dysfunctions. Therefore, the use of biomaterials/scaffolds for maxillofacial bone regrowth has been attracting great interest from many surgical specialties and experts. Many approaches have been devised in order to create an optimal bone scaffold capable of achieving desirable degrees of bone integration and osteogenesis. Osteogenesis represents a complex physiological process involving multiple cooperating systems. A tight relationship between the immune and skeletal systems has lately been established using the concept of “osteoimmunology,” since various molecules, particularly those regulating immunological and inflammatory processes, are shared. Inflammatory mediators are now being implicated in bone remodeling, according to new scientific data. In this study, a profiler PCR array was employed to evaluate the expression of cytokines and chemokines in human adipose derived-mesenchymal stem cells (hASCs) cultured on porous hydroxylapatite (HA)/Collagen derived Bio-Oss® /Avitene scaffolds, up to day 21. In hASCs grown on the Bio-Oss® /Avitene biomaterial, 12 differentially expressed genes (DEGs) were found to be up-regulated, together with 12 DEG downregulated. Chemokine CCL2, which affects bone metabolism, tested down-regulated. Interestingly, the Bio-Oss® /Avitene induced the down-regulation of pro-inflammatory interleukin IL-6. In conclusion, our investigation carried out on the Bio-Oss® /Avitene scaffold indicates that it could be successfully employed in maxillofacial surgery. Indeed, this composite material has the advantage of being customized on the basis of the individual patients favoring a novel personalized medicine approach

    Region-dependent effects of flibanserin and buspirone on adenylyl cyclase activity in the human brain

    Get PDF
    The mode of action of antidepressant drugs may be related to mechanisms of receptor adaptation, involving overall the serotonin 1A (5-HT1A) receptor subtype. However, so far, the clinical effectiveness of selective compounds acting at this level has proved disappointing. This could be explained by the heterogeneity of 5-HT1A receptors within the central nervous system. In animals, two 5-HT1A agonists, flibanserin and buspirone, have shown different pharmacological properties, depending on the brain region. Since no evidence supports this observation in humans, this study sought to investigate whether these two drugs exert different effects on 5-HT1A receptor activation in three different human brain areas: the prefrontal cortex, hippocampus and raphe nuclei. 5-HT1A-mediated inhibition of forskolin-stimulated adenylyl cyclase (AC) was taken as an index of 5-HT1A receptor activation. Flibanserin significantly reduced the activity of AC post-synaptically, i.e. in the prefrontal cortex [EC50 (mean +/- S.E.M.), 28 +/- 10.2 nM; Emax, 18 +/- 2.3%] and in the hippocampus (EC50, 3.5 +/- 3.1 nM; Emax, 20 +/- 4.0%), but had no effect in the raphe nuclei, i.e. at pre-synaptic level. Vice versa, buspirone was only slightly but significantly effective in the raphe (EC50, 3.0 +/- 2.8 nM; Emax, 12 +/- 1.9%). Agonist effects were sensitive to the 5-HT1A antagonists WAY-100135 and pindobind 5-HT1A in the cortex and raphe nuclei, whereas buspirone antagonized flibanserin in the hippocampus. These findings suggest a region-related action of flibanserin and buspirone on forskolin-stimulated AC activity in human brain

    Genetics and Epigenetics of Bone Remodeling and Metabolic Bone Diseases

    Get PDF
    Bone metabolism consists of a balance between bone formation and bone resorption, which is mediated by osteoblast and osteoclast activity, respectively. In order to ensure bone plasticity, the bone remodeling process needs to function properly. Mesenchymal stem cells differentiate into the osteoblast lineage by activating different signaling pathways, including transforming growth factor β (TGF-β)/bone morphogenic protein (BMP) and the Wingless/Int-1 (Wnt)/β-catenin pathways. Recent data indicate that bone remodeling processes are also epigenetically regulated by DNA methylation, histone post-translational modifications, and non-coding RNA expressions, such as micro-RNAs, long non-coding RNAs, and circular RNAs. Mutations and dysfunctions in pathways regulating the osteoblast differentiation might influence the bone remodeling process, ultimately leading to a large variety of metabolic bone diseases. In this review, we aim to summarize and describe the genetics and epigenetics of the bone remodeling process. Moreover, the current findings behind the genetics of metabolic bone diseases are also reporte

    Proteomic Profiling Reveals Specific Molecular Hallmarks of the Pig Claustrum

    Get PDF
    The present study, employing a comparative proteomic approach, analyzes the protein profile of pig claustrum (CLA), putamen (PU), and insula (IN). Pig brain is an interesting model whose key translational features are its similarities with cortical and subcortical structures of human brain. A greater difference in protein spot expression was observed in CLA vs PU as compared to CLA vs IN. The deregulated proteins identified in CLA resulted to be deeply implicated in neurodegenerative (i.e., sirtuin 2, protein disulfide-isomerase 3, transketolase) and psychiatric (i.e., copine 3 and myelin basic protein) disorders in humans. Metascape analysis of differentially expressed proteins in CLA vs PU comparison suggested activation of the α-synuclein pathway and L1 recycling pathway corroborating the involvement of these anatomical structures in neurodegenerative diseases. The expression of calcium/calmodulin-dependent protein kinase and dihydropyrimidinase like 2, which are linked to these pathways, was validated using western blot analysis. Moreover, the protein data set of CLA vs PU comparison was analyzed by Ingenuity Pathways Analysis to obtain a prediction of most significant canonical pathways, upstream regulators, human diseases, and biological functions. Interestingly, inhibition of presenilin 1 (PSEN1) upstream regulator and activation of endocannabinoid neuronal synapse pathway were observed. In conclusion, this is the first study presenting an extensive proteomic analysis of pig CLA in comparison with adjacent areas, IN and PUT. These results reinforce the common origin of CLA and IN and suggest an interesting involvement of CLA in endocannabinoid circuitry, neurodegenerative, and psychiatric disorders in humans

    Dietary Supplementation with Boswellia serrata, Verbascum thapsus, and Curcuma longa in Show Jumping Horses: Effects on Serum Proteome, Antioxidant Status, and Anti-Inflammatory Gene Expression

    Get PDF
    Abstract: Intense exercise can cause inflammation and oxidative stress due to the production of reactive oxygen species. These pathophysiological processes are interdependent, and each one can induce the other, creating a vicious circle. A placebo-controlled blind study was carried out in show jumping horses (n. 16) to evaluate the effects of a commercial dietary supplement (Dolhorse® N.B.F. Lanes srl, Milan, Italy) containing Verbascum thapsus leaf powder (1.42%), Curcuma longa (14.280 mg/kg), and Boswellia serrata (Roxb ex Colebr) (14.280 mg/kg) extracts. Before and after 10 days of dietary supplementation, blood samples were collected to evaluate the protein levels, antioxidants, and inflammatory responses by proteomic analysis or real-time Reverse Transcriptase- Polymerase Chain Reaction (real-time RT-PCR). A total of 36 protein spots, connected to 29 proteins, were modulated by dietary supplementation, whereas real-time RT-PCR revealed a significant downregulation of proinflammatory cytokines (interleukin 1α (p < 0.05) and interleukin-6 (0.005), toll-like receptor 4 (p < 0.05), and IKBKB (p < 0.05) in supplemented sport horses. Immunoglobulin chains, gelsolin, plasminogen, vitamin D binding protein, apolipoprotein AIV, and filamin B were overexpressed, whereas haptoglobin, α-2-HS-glycoprotein, α2-macroglobulin, afamin, amine oxidase, 60S acidic ribosomal protein, and complement fragments 3, 4, and 7 were reduced. No effect was observed on the antioxidant defense systems. The present results suggest this phytotherapy may reinforce the innate immune responses, thus representing a valid adjuvant to alleviate inflammation, which is a pathophysiological process in sport horses

    Hydroxylapatite-collagen hybrid scaffold induces human adipose-derived mesenchymal stem cells to osteogenic differentiation in vitro and bone regrowth in patients

    Get PDF
    Tissue engineering-based bone graft is an emerging viable treatment modality to repair and regenerate tissues damaged as a result of diseases or injuries. The structure and composition of scaffolds should modulate the classical osteogenic pathways in human stem cells. The osteoinductivity properties of the hydroxylapatite-collagen hybrid scaffold named Coll/Pro Osteon 200 were investigated in an in vitro model of human adipose mesenchymal stem cells (hASCs), whereas the clinical evaluation was carried out in maxillofacial patients. Differentially expressed genes (DEGs) induced by the scaffold were analyzed using the Osteogenesis RT2 PCR Array. The osteoinductivity potential of the scaffold was also investigated by studying the alkaline phosphatase (ALP) activity, matrix mineralization, osteocalcin (OCN), and CLEC3B expression protein. Fifty patients who underwent zygomatic augmentation and bimaxillary osteotomy were evaluated clinically, radiologically, and histologically during a 3-year follow-up. Among DEGs, osteogenesis-related genes, including BMP1/2, ALP, BGLAP, SP7, RUNX2, SPP1, and EGFR, which play important roles in osteogenesis, were found to be upregulated. The genes to cartilage condensation SOX9, BMPR1B, and osteoclast cells TNFSF11 were detected upregulated at every time point of the investigation. This scaffold has a high osteoinductivity revealed by the matrix mineralization, ALP activity, OCN, and CLEC3B expression proteins. Clinical evaluation evidences that the biomaterial promotes bone regrowth. Histological results of biopsy specimens from patients showed prominent ossification. Experimental data using the Coll/Pro Osteon 200 indicate that clinical evaluation of bone regrowth in patients, after scaffold implantation, was supported by DEGs implicated in skeletal development as shown in "in vitro" experiments with hASCs

    Acute Prosthetic Joint Infections with Poor Outcome Caused by Staphylococcus Aureus Strains Producing the Panton-Valentine Leukocidin

    Get PDF
    The aim of this study was to investigate whether the presence of Staphylococcus aureus (SA) producing the Panton-Valentine leukocidin (PVL) affects the outcome of Prosthetic Joint Infection (PJI). Patients with acute and chronic PJI sustained by SA were prospectively enrolled at the orthopedic unit of "Casa di Cura Santa Maria Maddalena", from January 2019 to October 2021. PJI diagnosis was reached according to the diagnostic criteria of the International Consensus Meeting on PJI of Philadelphia. Synovial fluid obtained via joint aspirations was collected in order to isolate SA. The detection of PVL was performed via real-time quantitative PCR (RT-qPCR). The outcome assessment was performed using the criteria of the Delphi-based International Multidisciplinary Consensus. Twelve cases of PJI caused by SA were included. Nine (75%) cases were acute PJI treated using debridement, antibiotic and implant retention (DAIR); the remaining three (25%) were chronic PJI treated using two-stage (n = 2) and one-stage revision (n = 1), respectively. The SA strains that tested positive for PVL genes were 5/12 (41.6%,). Treatment failure was documented in three cases of acute PJI treated using DAIR, all supported by SA-PVL strains (p < 0.045). The remaining two cases were chronic PJI treated with a revision arthroplasty (one and two stage, respectively), with a 100% eradication rate in a medium follow-up of 24 months. Although a small case series, our study showed a 100% failure rate in acute PJI, probably caused by SA PVL-producing strains treated conservatively (p < 0.04). In this setting, toxin research should guide radical surgical treatment and targeted antibiotic therapy

    Hydroxylapatite-collagen hybrid scaffold induces human adipose-derived mesenchymal stem cells to osteogenic differentiation in vitro and bone regrowth in patients

    Get PDF
    Tissue engineering-based bone graft is an emerging viable treatment modality to repair and regenerate tissues damaged as a result of diseases or injuries. The structure and composition of scaffolds should modulate the classical osteogenic pathways in human stem cells. The osteoinductivity properties of the hydroxylapatite-collagen hybrid scaffold named Coll/Pro Osteon 200 were investigated in an in vitro model of human adipose mesenchymal stem cells (hASCs), whereas the clinical evaluation was carried out in maxillofacial patients. Differentially expressed genes (DEGs) induced by the scaffold were analyzed using the Osteogenesis RT2 PCR Array. The osteoinductivity potential of the scaffold was also investigated by studying the alkaline phosphatase (ALP) activity, matrix mineralization, osteocalcin (OCN), and CLEC3B expression protein. Fifty patients who underwent zygomatic augmentation and bimaxillary osteotomy were evaluated clinically, radiologically, and histologically during a 3-year follow-up. Among DEGs, osteogenesis-related genes, including BMP1/2, ALP, BGLAP, SP7, RUNX2, SPP1, and EGFR, which play important roles in osteogenesis, were found to be upregulated. The genes to cartilage condensation SOX9, BMPR1B, and osteoclast cells TNFSF11 were detected upregulated at every time point of the investigation. This scaffold has a high osteoinductivity revealed by the matrix mineralization, ALP activity, OCN, and CLEC3B expression proteins. Clinical evaluation evidences that the biomaterial promotes bone regrowth. Histological results of biopsy specimens from patients showed prominent ossification. Experimental data using the Coll/Pro Osteon 200 indicate that clinical evaluation of bone regrowth in patients, after scaffold implantation, was supported by DEGs implicated in skeletal development as shown in "in vitro" experiments with hASCs

    Enhancement of the Biological and Mechanical Performances of Sintered Hydroxyapatite by Multiple Ions Doping

    Get PDF
    In the present work, hydroxyapatite (HA) nanoparticles doped with Mg2+, Sr2+, and Zn2+ ions are developed by wet neutralization method and then sintered at 1,250°C to obtain bulk consolidated materials. Physicochemical and microstructural analyses show that the presence of doping ions in the HA structure induced the formation of βTCP as secondary phase, during the sintering process, and we found that this effect is depending on the stability of the various doping ions in the hydroxyapatite lattice itself. We also found that the formation of βTCP as secondary phase, in turn, confines the grain growth of HA induced by the high-temperature sintering process, thus leading to a strong increase of the flexural strength of the bulk materials, according to Hall-Petch-like law. Furthermore, we found that the doping ions enter also in the structure of the βTCP phase; besides the grain growth confinement, also the solubility and ion release ability of the final materials were enhanced. In addition to ameliorate the mechanical performance, the described phenomena also activate multiple biofunctionalities: (i) ability to upregulate various genes involved in the osteogenesis, as obtained by human adipose stem cells culture and evaluated by array technology; (ii) enhanced resistance to the adhesion and proliferation of Gram+ and Gram– bacterial strains. Hence, our results open a perspective for the use of sintered multiple ion-doped HA to develop ceramic biodevices, such as plates, screws, or other osteosynthesis media, with enhanced strength, osteointegrability, and the ability to prevent post-surgical infections
    • …
    corecore