6,804 research outputs found
The Two-Screen Measurement Setup to Indirectly Measure Proton Beam Self-Modulation in AWAKE
The goal of the first phase of the AWAKE \cite{AWAKE1,AWAKE2} experiment at
CERN is to measure the self-modulation \cite{SMI} of the long SPS proton bunch into microbunches after traversing
of plasma with a plasma density of
. The two screen measurement setup
\cite{Turner2016} is a proton beam diagnostic that can indirectly prove the
successful development of the self-modulation of the proton beam by imaging
protons that got defocused by the transverse plasma wakefields after passing
through the plasma, at two locations downstream the end of the plasma. This
article describes the design and realization of the two screen measurement
setup integrated in the AWAKE experiment. We discuss the performance and
background response of the system based on measurements performed with an
unmodulated Gaussian SPS proton bunch during the AWAKE beam commissioning in
September and October 2016. We show that the system is fully commissioned and
adapted to eventually image the full profile of a self-modulated SPS proton
bunch in a single shot measurement during the first phase of the AWAKE
experiment.Comment: 5 pages 8 figure
Indirect Self-Modulation Instability Measurement Concept for the AWAKE Proton Beam
AWAKE, the Advanced Proton-Driven Plasma Wakefield Acceleration Experiment,
is a proof-of-principle R&D experiment at CERN using a 400 GeV/c proton beam
from the CERN SPS (longitudinal beam size sigma_z = 12 cm) which will be sent
into a 10 m long plasma section with a nominal density of approx. 7x10^14
atoms/cm3 (plasma wavelength lambda_p = 1.2mm). In this paper we show that by
measuring the time integrated transverse profile of the proton bunch at two
locations downstream of the AWAKE plasma, information about the occurrence of
the self-modulation instability (SMI) can be inferred. In particular we show
that measuring defocused protons with an angle of 1 mrad corresponds to having
electric fields in the order of GV/m and fully developed self-modulation of the
proton bunch. Additionally, by measuring the defocused beam edge of the
self-modulated bunch, information about the growth rate of the instability can
be extracted. If hosing instability occurs, it could be detected by measuring a
non-uniform defocused beam shape with changing radius. Using a 1 mm thick
Chromox scintillation screen for imaging of the self-modulated proton bunch, an
edge resolution of 0.6 mm and hence a SMI saturation point resolution of 1.2 m
can be achieved.Comment: 4 pages, 4 figures, EAAC conference proceeding
Low mass dimuons within a hybrid approach
We analyse dilepton emission from hot and dense hadronic matter using a
hybrid approach based on the Ultrarelativistic Quantum Molecular Dynamics
(UrQMD) transport model with an intermediate hydrodynamic stage for the
description of heavy-ion collisions at relativistic energies. Focusing on the
enhancement with respect to the contribution from long-lived hadron decays
after freeze-out observed at the SPS in the low mass region of the dilepton
spectra (often referred to as "the excess"), the relative importance of the
emission from the equilibrium and the non-equilibrium stages is discussed.Comment: Proceedings of Hot Quarks 2010, 21-26 June 2010 Las Londe Les Maures;
v2: Corrected typos and added a commen
Late Quaternary monogenetic volcanoes along RĂo Salado, Sothwest Mendoza Province, Argentina
On the eastem flank of the Andes, to the north of RĂo Salado in southwest Mendoza Province (35Âș07'S-35Âș10'S), there are 4 monogenetic cones with blocky lava flows. A western group of small volcanoes, Hoyada, Lagunita and Loma Negra, with a total volume of -0.2 km3, are composed of amphibole-bearing basaltic andesite, and the eastem, more voluminous Hoyo Colorado volcano, with 0.44 km3 is composed of olivine (+ oxidised amphibole) basaltic andesite. Although data indicate they were emitted through successive, strombolian eruptions, they are overall coeval and the youngest Late Pleistocene volcanoes located in an "extra-Andean" setting, -70 km east of the main volcanic front. The magmas of the westem group of monogenetic cones show petrographic and geochemical characteristics that support processes of crustal interaction during ascent. In contrast, the magmas of the Hoyo Colorado volcano had a more direct ascent. Structural characteristics of the basement rocks to the volcanoes and the current seismotectonic activity of the Andes at this latitude indicate that the monogenetic cones of RĂo Salado were emplaced in a dominantly compressive tectonic regime
Sub-types of nonbelieved memories reveal differential outcomes of challenges to memories
Nonbelieved memories (NBMs) highlight the independence between metamemorial judgments that contribute to the experience of remembering. Initial definitions of NBMs portrayed them as involving the withdrawal of autobiographical belief despite sustained recollection. While people rate belief for their NBMs as weaker than recollection, the average difference is too small to support the idea that belief is completely withdrawn in all cases. Furthermore, ratings vary considerably across NBMs. In two studies, we reanalyzed reports from prior studies to examine whether NBM reports reflect a single category or multiple sub-categories using cluster analytic methods. In Study 1, we identified three sub-types of NBMs. In Study 2 we incorporated the concept of belief in accuracy, and found that two of the clusters from Study 1 split into two clusters apiece. Higher ratings of recollection than belief in occurrence characterized all clusters, which were differentiated by the degree of difference between these variables. In both studies the clusters were differentiated by a number of memory characteristic ratings and by reasons reported as leading to the alteration of belief. Implications for understanding the remembering of past events and predicting the creation of NBMs are discussed
A device to characterize optical fibres
ATLAS is a general purpose experiment approved for the LHC collider at CERN.
An important component of the detector is the central hadronic calorimeter; for
its construction more than 600,000 Wave Length Shifting (WLS) fibres
(corresponding to a total length of 1,120 Km) have been used.
We have built and put into operation a dedicated instrument for the
measurement of light yield and attenuation length over groups of 20 fibres at a
time.
The overall accuracy achieved in the measurement of light yield
(attenuation length) is 1.5% (3%).
We also report the results obtained using this method in the quality control
of a large sample of fibres.Comment: 17 pages 20 figeres submitted to NIM journa
Using wearable sensors to assess freezing of gait in the real world
Freezing of gait (FOG) is a debilitating symptom of Parkinson\u27s disease (PD) that remains difficult to assess. Wearable movement sensors and associated algorithms can be used to quantify FOG in laboratory settings, but the utility of such methods for real world use is unclear. We aimed to determine the suitability of our wearable sensor-based FOG assessment method for real world use by assessing its performance during in-clinic simulated real world activities. Accuracy of the sensor-based method during simulated real-world tasks was calculated using expert rated video as the gold standard. To determine feasibility for unsupervised home use, we also determined correlations between the percent of active time spent freezing (%ATSF) during unsupervised home use and in-clinic activities. Nineteen people with PD and FOG participated in this study. Results from our sensor-based method demonstrated an accuracy above 90% compared to gold-standard expert review during simulated real-world tasks. Additionally, %ATSF from our sensor-based method during unsupervised home use correlated strongly with %ATSF from our sensor-based method during in-clinic simulated real-world activities (Ï = 0.73). Accuracy values and correlation patterns suggest our method may be useful for FOG assessment in the real world
- âŠ