25 research outputs found
Association between a genetic variant of type-1 cannabinoid receptor and inflammatory neurodegeneration in multiple sclerosis
Genetic ablation of type-1 cannabinoid receptors (CB1Rs) exacerbates the neurodegenerative damage of experimental autoimmune encephalomyelitis, the rodent model of multiple sclerosis (MS). To address the role on CB1Rs in the pathophysiology of human MS, we first investigated the impact of AAT trinucleotide short tandem repeat polymorphism of CNR1 gene on CB1R cell expression, and secondly on the inflammatory neurodegeneration process responsible for irreversible disability in MS patients. We found that MS patients with long AAT repeats within the CNR1 gene (≥12 in both alleles) had more pronounced neuronal degeneration in response to inflammatory white matter damage both in the optic nerve and in the cortex. Optical Coherence Tomography (OCT), in fact, showed more severe alterations of the retinal nerve fiber layer (RNFL) thickness and of the macular volume (MV) after an episode of optic neuritis in MS patients carrying the long AAT genotype of CNR1. MS patients with long AAT repeats also had magnetic resonance imaging (MRI) evidence of increased gray matter damage in response to inflammatory lesions of the white matter, especially in areas with a major role in cognition. In parallel, visual abilities evaluated at the low contrast acuity test, and cognitive performances were negatively influenced by the long AAT CNR1 genotype in our sample of MS patients. Our results demonstrate the biological relevance of the (AAT)n CNR1 repeats in the inflammatory neurodegenerative damage of MS
A Cluster of Three Single Nucleotide Polymorphisms in the 3′-Untranslated Region of Human Glycoprotein PC-1 Gene Stabilizes PC-1 mRNA and Is Associated With Increased PC-1 Protein Content and Insulin Resistance–Related Abnormalities
Glycoprotein PC-1 inhibits insulin signaling and, when overexpressed, plays a role in human insulin resistance. Mechanisms of PC-1 overexpression are unknown. We have identified a haplotype in the 3′-untranslated region of the PC-1 gene that may modulate PC-1 expression and confer an increased risk for insulin resistance. Individuals from Sicily, Italy, carrying the "P" haplotype (i.e., a cluster of three single nucleotide polymorphisms: G2897A, G2906C, and C2948T) were at higher risk (P < 0.01) for insulin resistance and had higher (P < 0.05) levels of plasma glucose and insulin during an oral glucose tolerance test and higher levels of cholesterol, HDL cholesterol, and systolic blood pressure. They also had higher (P < 0.05–0.01) PC-1 protein content in both skeletal muscle and cultured skin fibroblasts. In CHO cells transfected with either P or wild-type cDNA, specific PC-1 mRNA half-life was increased for those transfected with P (t/2 = 3.73 ± 1.0 vs. 1.57 ± 0.2 h; P < 0.01). In a population of different ethnicity (Gargano, East Coast Italy), patients with type 2 diabetes (the most likely clinical outcome of insulin resistance) had a higher P haplotype frequency than healthy control subjects (7.8 vs. 1.5%, P < 0.01), thus replicating the association between the P allele and the insulin resistance–related abnormalities observed among Sicilians. In conclusion, we have identified a possible molecular mechanism for PC-1 overexpression that confers an increased risk for insulin resistance–related abnormalities
COVID-19 Severity in Multiple Sclerosis: Putting Data Into Context
Background and objectives: It is unclear how multiple sclerosis (MS) affects the severity of COVID-19. The aim of this study is to compare COVID-19-related outcomes collected in an Italian cohort of patients with MS with the outcomes expected in the age- and sex-matched Italian population. Methods: Hospitalization, intensive care unit (ICU) admission, and death after COVID-19 diagnosis of 1,362 patients with MS were compared with the age- and sex-matched Italian population in a retrospective observational case-cohort study with population-based control. The observed vs the expected events were compared in the whole MS cohort and in different subgroups (higher risk: Expanded Disability Status Scale [EDSS] score > 3 or at least 1 comorbidity, lower risk: EDSS score ≤ 3 and no comorbidities) by the χ2 test, and the risk excess was quantified by risk ratios (RRs). Results: The risk of severe events was about twice the risk in the age- and sex-matched Italian population: RR = 2.12 for hospitalization (p < 0.001), RR = 2.19 for ICU admission (p < 0.001), and RR = 2.43 for death (p < 0.001). The excess of risk was confined to the higher-risk group (n = 553). In lower-risk patients (n = 809), the rate of events was close to that of the Italian age- and sex-matched population (RR = 1.12 for hospitalization, RR = 1.52 for ICU admission, and RR = 1.19 for death). In the lower-risk group, an increased hospitalization risk was detected in patients on anti-CD20 (RR = 3.03, p = 0.005), whereas a decrease was detected in patients on interferon (0 observed vs 4 expected events, p = 0.04). Discussion: Overall, the MS cohort had a risk of severe events that is twice the risk than the age- and sex-matched Italian population. This excess of risk is mainly explained by the EDSS score and comorbidities, whereas a residual increase of hospitalization risk was observed in patients on anti-CD20 therapies and a decrease in people on interferon
DMTs and Covid-19 severity in MS: a pooled analysis from Italy and France
We evaluated the effect of DMTs on Covid-19 severity in patients with MS, with a pooled-analysis of two large cohorts from Italy and France. The association of baseline characteristics and DMTs with Covid-19 severity was assessed by multivariate ordinal-logistic models and pooled by a fixed-effect meta-analysis. 1066 patients with MS from Italy and 721 from France were included. In the multivariate model, anti-CD20 therapies were significantly associated (OR = 2.05, 95%CI = 1.39–3.02, p < 0.001) with Covid-19 severity, whereas interferon indicated a decreased risk (OR = 0.42, 95%CI = 0.18–0.99, p = 0.047). This pooled-analysis confirms an increased risk of severe Covid-19 in patients on anti-CD20 therapies and supports the protective role of interferon
A Variation in 3′ UTR of hPTP1B Increases Specific Gene Expression and Associates with Insulin Resistance
Protein tyrosine phosphatase 1B (PTP1B) inhibits insulin signaling and, when overexpressed, plays a role in insulin resistance (Ahmad et al. 1997). We identified, in the 3′ untranslated region of the PTP1B gene, a 1484insG variation that, in two different populations, is associated with several features of insulin resistance: among male individuals, higher values of the insulin resistance HOMA(IR) index (P=.006), serum triglycerides (P=.0002), and total/HDL cholesterol ratio (P=.025) and, among female individuals, higher blood pressure (P=.01). Similar data were also obtained in a family-based association study by use of sib pairs discordant for genotype (Gu et al. 2000). Subjects carrying the 1484insG variant showed also PTP1B mRNA overexpression in skeletal muscle (6,166 ± 1,879 copies/40 ng RNA vs. 2,983 ± 1,620; P<.01). Finally, PTP1B mRNA stability was significantly higher (P<.01) in human embryo kidney 293 cells transfected with 1484insG PTP1B, as compared with those transfected with wild-type PTP1B. Our data indicate that the 1484insG allele causes PTP1B overexpression and plays a role in insulin resistance. Therefore, individuals carrying the 1484insG variant might particularly benefit from PTP1B inhibitors, a promising new tool for treatment of insulin resistance (Kennedy and Ramachandran 2000)
Granulin mutation drives brain damage and reorganization from preclinical to symptomatic FTLD
Granulin (GRN) mutations have been identified as a major cause of frontotemporal lobar degeneration (FTLD) by haploinsufficiency mechanism, although their effects on brain tissue dysfunction and damage still remain to be clarified. In this study, we investigated the pattern of neuroimaging abnormalities in FTLD patients, carriers and noncarriers of GRN Thr272fs mutation, and in presymptomatic carriers. We assessed regional gray matter (GM) atrophy, and resting (RS)-functional magnetic resonance imaging (fMRI). The functional connectivity maps of the salience (SN) and the default mode (DMN) networks were considered. Frontotemporal gray matter atrophy was found in all FTLD patients (more remarkably in those GRN Thr272fs carriers), but not in presymptomatic carriers. Functional connectivity within the SN was reduced in all FTLD patients (again more remarkably in those mutation carriers), while it was enhanced in the DMN. Conversely, presymptomatic carriers showed increased connectivity in the SN, with no changes in the DMN. Our findings suggest that compensatory mechanisms of brain plasticity are present in GRN-related FTLD, but with different patterns at a preclinical and symptomatic disease stage