1,570 research outputs found
The Herschel exploitation of local galaxy Andromeda (HELGA) V: Strengthening the case for substantial interstellar grain growth
In this paper we consider the implications of the distributions of dust and
metals in the disc of M31. We derive mean radial dust distributions using a
dust map created from Herschel images of M31 sampling the entire far-infrared
(FIR) peak. Modified blackbodies are fit to approximately 4000 pixels with a
varying, as well as a fixed, dust emissivity index (beta). An overall metal
distribution is also derived using data collected from the literature. We use a
simple analytical model of the evolution of the dust in a galaxy with dust
contributed by stellar sources and interstellar grain growth, and fit this
model to the radial dust-to-metals distribution across the galaxy. Our analysis
shows that the dust-to-gas gradient in M31 is steeper than the metallicity
gradient, suggesting interstellar dust growth is (or has been) important in
M31. We argue that M31 helps build a case for cosmic dust in galaxies being the
result of substantial interstellar grain growth, while the net dust production
from stars may be limited. We note, however, that the efficiency of dust
production in stars, e.g., in supernovae (SNe) ejecta and/or stellar
atmospheres, and grain destruction in the interstellar medium (ISM) may be
degenerate in our simple model. We can conclude that interstellar grain growth
by accretion is likely at least as important as stellar dust production
channels in building the cosmic dust component in M31.Comment: 12 pages, 7 figures. Published in MNRAS 444, 797. This version is
updated to match the published versio
The spectrum of boundary states in sine-Gordon model with integrable boundary conditions
The bound state spectrum and the associated reflection factors are determined
for the sine-Gordon model with arbitrary integrable boundary condition by
closing the bootstrap. Comparing the symmetries of the bound state spectrum
with that of the Lagrangian it is shown how one can "derive" the relationship
between the UV and IR parameters conjectured earlier.Comment: LaTeX2e, 19 pages, 15 eps figures. References updated, note added.
Accepted for publication in Nuclear Physics
Hubble flow variance and the cosmic rest frame
We characterize the radial and angular variance of the Hubble flow in the
COMPOSITE sample of 4534 galaxies, on scales in which much of the flow is in
the nonlinear regime. With no cosmological assumptions other than the existence
of a suitably averaged linear Hubble law, we find with decisive Bayesian
evidence (ln B >> 5) that the Hubble constant averaged in independent spherical
radial shells is closer to its asymptotic value when referred to the rest frame
of the Local Group, rather than the standard rest frame of the Cosmic Microwave
Background. An exception occurs for radial shells in the range 40/h-60/h Mpc.
Angular averages reveal a dipole structure in the Hubble flow, whose amplitude
changes markedly over the range 32/h-62/h Mpc. Whereas the LG frame dipole is
initially constant and then decreases significantly, the CMB frame dipole
initially decreases but then increases. The map of angular Hubble flow
variation in the LG rest frame is found to coincide with that of the residual
CMB temperature dipole, with correlation coefficient -0.92. These results are
difficult to reconcile with the standard kinematic interpretation of the motion
of the Local Group in response to the clustering dipole, but are consistent
with a foreground non-kinematic anisotropy in the distance-redshift relation of
0.5% on scales up to 65/h Mpc. Effectively, the differential expansion of space
produced by nearby nonlinear structures of local voids and denser walls and
filaments cannot be reduced to a local boost. This hypothesis suggests a
reinterpretation of bulk flows, which may potentially impact on calibration of
supernovae distances, anomalies associated with large angles in the CMB
anisotropy spectrum, and the dark flow inferred from the kinematic
Sunyaev-Zel'dovich effect. It is consistent with recent studies that find
evidence for a non-kinematic dipole in the distribution of distant radio
sources.Comment: 37 pages, 9 tables, 13 figures; v2 adds extensive new analysis
(including additional subsections, tables, figures); v3 adds a Monte Carlo
analysis (with additional table, figure) which further tightens the
statistical robustness of the dipole results; v4 adds further clarifications,
small corrections, references and discussion of Planck satellite results; v5
typos fixed, matches published versio
Finite size effects in quantum field theories with boundary from scattering data
We derive a relation between leading finite size corrections for a 1+1
dimensional quantum field theory on a strip and scattering data, which is very
similar in spirit to the approach pioneered by Luscher for periodic boundary
conditions. The consistency of the results is tested both analytically and
numerically using thermodynamic Bethe Ansatz, Destri-de Vega nonlinear integral
equation and classical field theory techniques. We present strong evidence that
the relation between the boundary state and the reflection factor one-particle
couplings, noticed earlier by Dorey et al. in the case of the Lee-Yang model
extends to any boundary quantum field theory in 1+1 dimensions.Comment: 24 pages, 1 eps figure. Clarifying comments and a reference adde
Spin effects in transport through non-Fermi liquid quantum dots
The current-voltage characteristic of a one dimensional quantum dot connected
via tunnel barriers to interacting leads is calculated in the region of
sequential tunneling. The spin of the electrons is taken into account.
Non-Fermi liquid correlations implying spin-charge separation are assumed to be
present in the dot and in the leads. It is found that the energetic distance of
the peaks in the linear conductance shows a spin-induced parity effect at zero
temperature T. The temperature dependence of the positions of the peaks depends
on the non-Fermi liquid nature of the system. For non-symmetric tunnel barriers
negative differential conductances are predicted, which are related to the
participation in the transport of collective states in the quantum dot with
larger spins. Without spin-charge separation the negative differential
conductances do not occur. Taking into account spin relaxation destroys the
spin-induced conductance features. The possibility of observing in experiment
the predicted effects are briefly discussed.Comment: 15 pages, 16 figures, accepted for publication on Physical Review
Usefulness of high resolution coastal models for operational oil spill forecast: the "Full City" accident
Oil spill modeling is considered to be an important part of a decision support system (DeSS) for oil spill combatment and is useful for remedial action in case of accidents, as well as for designing the environmental monitoring system that is frequently set up after major accidents. Many accidents take place in coastal areas, implying that low resolution basin scale ocean models are of limited use for predicting the trajectories of an oil spill. In this study, we target the oil spill in connection with the "Full City" accident on the Norwegian south coast and compare operational simulations from three different oil spill models for the area. The result of the analysis is that all models do a satisfactory job. The "standard" operational model for the area is shown to have severe flaws, but by applying ocean forcing data of higher resolution (1.5 km resolution), the model system shows results that compare well with observations. The study also shows that an ensemble of results from the three different models is useful when predicting/analyzing oil spill in coastal areas
Edge Electron Gas
The uniform electron gas, the traditional starting point for density-based
many-body theories of inhomogeneous systems, is inappropriate near electronic
edges. In its place we put forward the appropriate concept of the edge electron
gas.Comment: 4 pages RevTex with 7 ps-figures included. Minor changes in
title,text and figure
Effects of land use on trip generation in urban areas : comparison between estimated trip generation rates and planning practices in Dar es Salaam, Tanzania
In developing countries cities, the development of planned urban areas is associated with rapid changes in land uses. The number of vehicles trips generation in the planned area is related to the types, patterns and characteristics of land uses in that particular area. However, still it is unclear to what extent the change of land use affect trip generation rates in urban planned areas. This study has examined the effects of land use changes on trip generation rates for different residential land uses. A methodology for deriving trip generation rates for different residential land uses was developed. Additionally, the study made comparisons between vehicles trip generation rates provided in land use and transport planning manuals for local practitioners and rates obtained in the study area. Furthermore, the study identified the factors considered by planners and policy makers in order to reduce the effects of land use change in planned urban areas. This study therefore recommended the need of conducting site or city specific vehicle trip rates rather than adopting trip rates from different transport manuals.Paper presented at the 34th Annual Southern African Transport Conference 6-9 July 2015 "Working Together to Deliver - Sakha Sonke", CSIR International Convention Centre, Pretoria, South Africa.The Minister of Transport, South AfricaTransportation Research Board of the US
Back-reaction and effective acceleration in generic LTB dust models
We provide a thorough examination of the conditions for the existence of
back-reaction and an "effective" acceleration (in the context of Buchert's
averaging formalism) in regular generic spherically symmetric
Lemaitre-Tolman-Bondi (LTB) dust models. By considering arbitrary spherical
comoving domains, we verify rigorously the fulfillment of these conditions
expressed in terms of suitable scalar variables that are evaluated at the
boundary of every domain. Effective deceleration necessarily occurs in all
domains in: (a) the asymptotic radial range of models converging to a FLRW
background, (b) the asymptotic time range of non-vacuum hyperbolic models, (c)
LTB self-similar solutions and (d) near a simultaneous big bang. Accelerating
domains are proven to exist in the following scenarios: (i) central vacuum
regions, (ii) central (non-vacuum) density voids, (iii) the intermediate radial
range of models converging to a FLRW background, (iv) the asymptotic radial
range of models converging to a Minkowski vacuum and (v) domains near and/or
intersecting a non-simultaneous big bang. All these scenarios occur in
hyperbolic models with negative averaged and local spatial curvature, though
scenarios (iv) and (v) are also possible in low density regions of a class of
elliptic models in which local spatial curvature is negative but its average is
positive. Rough numerical estimates between -0.003 and -0.5 were found for the
effective deceleration parameter. While the existence of accelerating domains
cannot be ruled out in models converging to an Einstein de Sitter background
and in domains undergoing gravitational collapse, the conditions for this are
very restrictive. The results obtained may provide important theoretical clues
on the effects of back-reaction and averaging in more general non-spherical
models.Comment: Final version accepted for publication in Classical and Quantum
Gravity. 47 pages in IOP LaTeX macros, 12 pdf figure
- …