4,813 research outputs found
Pneumatic interpretation in the renewal tradition: the first 50 years
This thesis is a consideration of the Spirit’s role in the interpretation of scripture (pneumatic interpretation) through a conversation surrounding this topic that has been taking place between scholars who are in, or who identify with, the renewal tradition (also known as the Pentecostal and charismatic movement[s]) since 1970 when renewed emphasis on and experience of the Spirit spurred hermeneutical conversations.
Its purpose is twofold: 1) to build understanding of pneumatic interpretation through the voices of those involved in the conversation; 2) to foster appreciation and understanding between scholars across or identifying with the renewal tradition. A significant proportion of contributions to this conversation have been from those involved in Pentecostal hermeneutics but the thesis uses renewal terminology to reflect inclusivity of all scholars across or identifying with the renewal tradition who emphasise the Spirit and accentuate the Spirit’s role in hermeneutical considerations.
The thesis stresses that central to pneumatic interpretation in the renewal tradition is priority placed on personal experience of and intimate relationship with the triune God through pneumatic encounter. Three integral, and dynamically interrelating components of this relationship are given attention: affect, ethics, and cognition. It also stresses that considering the Spirit’s role in scriptural interpretation requires contemplation of the relational nature of God from a pneumatic starting point. The thesis therefore asserts that pneumatic interpretation is holistic and cannot be restricted to interpretation of the scriptural text, because the Spirit always works through and beyond the written words interpreting and appropriating scriptural truth in our lives in ways that align with scripture and transform and draw us holistically into knowledge of God as Father, Son, and Spirit.
In terms of structure, the thesis addresses the conversation chronologically to show historical and thematic progress
New measurements of cosmic infrared background fluctuations from early epochs
Cosmic infrared background fluctuations may contain measurable contribution
from objects inaccessible to current telescopic studies, such as the first
stars and other luminous objects in the first Gyr of the Universe's evolution.
In an attempt to uncover this contribution we have analyzed the GOODS data
obtained with the Spitzer IRAC instrument, which are deeper and cover larger
scales than the Spitzer data we have previously analyzed. Here we report these
new measurements of the cosmic infrared background (CIB) fluctuations remaining
after removing cosmic sources to fainter levels than before. The remaining
anisotropies on scales > 0.5 arcmin have a significant clustering component
with a low shot-noise contribution. We show that these fluctuations cannot be
accounted for by instrumental effects, nor by the Solar system and Galactic
foreground emissions and must arise from extragalactic sources.Comment: Ap.J.Letters, in pres
Cosmic Infrared Background Fluctuations and Zodiacal Light
We have performed a specific observational test to measure the effect that
the zodiacal light can have on measurements of the spatial fluctuations of the
near-IR background. Previous estimates of possible fluctuations caused by
zodiacal light have often been extrapolated from observations of the thermal
emission at longer wavelengths and low angular resolution, or from IRAC
observations of high latitude fields where zodiacal light is faint and not
strongly varying with time. The new observations analyzed here target the
COSMOS field, at low ecliptic latitude where the zodiacal light intensity
varies by factors of over the range of solar elongations at which the
field can be observed. We find that the white noise component of the spatial
power spectrum of the background is correlated with the modeled zodiacal light
intensity. Roughly half of the measured white noise is correlated with the
zodiacal light, but a more detailed interpretation of the white noise is
hampered by systematic uncertainties that are evident in the zodiacal light
model. At large angular scales () where excess power above the
white noise is observed, we find no correlation of the power with the modeled
intensity of the zodiacal light. This test clearly indicates that the large
scale power in the infrared background is not being caused by the zodiacal
light.Comment: 17 pp. Accepted for publication in the Ap
The Gossner mission to Chota Nagpur 1845-1875 a crises in Lutheran-Anglican missionary policy
Not availabl
Thermal detectors as X-ray spectrometers
Sensitive thermal detectors should be useful for measuring very small energy pulses, such as those produced by the absorption of X-ray photons. The measurement uncertainty can be very small, making the technique promising for high resolution nondispersive X-ray spectroscopy. The limits to the energy resolution of such thermal detectors are derived and used to find the resolution to be expected for a detector suitable for X-ray spectroscopy in the 100 eV to 10,000 eV range. If there is no noise in the thermalization of the X-ray, resolution better than 1 eV full width at half maximum is possible for detectors operating at 0.1 K. Energy loss in the conversion of the photon energy to heat is a potential problem. The loss mechanisms may include emission of photons or electrons, or the trapping of energy in long lived metastable states. Fluctuations in the phonon spectrum could also limit the resolution if phonon relaxation times are very long. Conceptual solutions are given for each of these possible problems
Demonstrating the negligible contribution of optical ACS/HST galaxies to source-subtracted cosmic infrared background fluctuations in deep IRAC/Spitzer images
We study the possible contribution of optical galaxies detected with the {\it
Hubble} ACS instrument to the near-IR cosmic infrared (CIB) fluctuations in
deep {\it Spitzer} images. The {\it Spitzer} data used in this analysis are
obtained in the course of the GOODS project from which we select four
independent regions observed at both 3.6 and 4.5
\um. ACS source catalogs for all of these areas are used to construct maps
containing only their emissions in the ACS -bands. We find that
deep Spitzer data exhibit CIB fluctuations remaining after removal of
foreground galaxies of a very different clustering pattern at both 3.6 and 4.5
\um than the ACS galaxies could contribute. We also find that there are very
good correlations between the ACS galaxies and the {\it removed} galaxies in
the Spitzer maps, but practically no correlations remain with the residual
Spitzer maps used to identify the CIB fluctuations. These contributions become
negligible on larger scales used to probe the CIB fluctuations arising from
clustering. This means that the ACS galaxies cannot contribute to the
large-scale CIB fluctuations found in the residual Spitzer data. The absence of
their contributions also means that the CIB fluctuations arise at z\gsim 7.5
as the Lyman break of their sources must be redshifted past the longest ACS
band, or the fluctuations have to originate in the more local but extremely low
luminosity galaxies.Comment: Ap.J.Letters, in press. Minor revisions to mathc the accepted versio
Peroxisome Proliferator-activated receptor alpha gene variation influences age of onset and progression of type 2 diabetes
Dysregulation of fatty acid metabolism is important in the pathogenesis of type 2 diabetes. Peroxisome proliferator-activated receptor (PPAR) is a master regulator of fatty acid catabolism, and PPAR activators delay the onset of type 2 diabetes. We examined association between three PPAR gene polymorphisms (an AC variant in intron 1, the L162V variant, and the intron 7 GC variant) and age at diagnosis of type 2 diabetes in 912 Caucasian type 2 diabetic subjects. Individually, PPAR gene variants did not influence age at diagnosis, but in combination, the rare alleles of both the intron 1 AC (P < 0.001) and intron 7 GC (P = 0.025) variants synergistically lowered age at diagnosis (interaction P < 0.001). Overall, the PPAR haplotype signficantly influenced age at diagnosis (P = 0.027), with the C-L-C and C-V-C haplotypes (intron 1-L162V-intron 7) accelerating onset of diabetes by 5.9 (P = 0.02) and 10 (P = 0.03) years, respectively, as compared with the common A-L-G haplotype, and was associated with an odds ratio for early-onset diabetes (age at diagnosis 45 years) of 3.75 (95% CI 1.65–8.56, P = 0.002). Intron 1 C-allele carriers also progressed more rapidly to insulin monotherapy (AA 9.4 ± 1.5 and AC + CC 5.3 ± 1.1 years, P = 0.002). These data indicate that PPAR gene variation influences the onset and progression of type 2 diabetes
Quantitative evaluation of polymer gel dosimeters by broadband ultrasound attenuation
Ultrasound has been examined previously as an alternative readout method for irradiated polymer gel dosimeters, with authors reporting varying dose response to ultrasound transmission measurements. In this current work we extend previous work to measure the broadband ultrasound attenuation (BUA) response of irradiated PAGAT gel dosimeters, using a novel ultrasound computed tomography system
- …