209 research outputs found

    Use of Genetic Algorithms for Contrast and Entropy Optimization in ISAR Autofocusing

    Get PDF
    Image contrast maximization and entropy minimization are two commonly used techniques for ISAR image autofocusing. When the signal phase history due to the target radial motion has to be approximated with high order polynomial models, classic optimization techniques fail when attempting to either maximize the image contrast or minimize the image entropy. In this paper a solution of this problem is proposed by using genetic algorithms. The performances of the new algorithms that make use of genetic algorithms overcome the problem with previous implementations based on deterministic approaches. Tests on real data of airplanes and ships confirm the insight

    Fast and Accurate ISAR Focusing Based on a Doppler Parameter Estimation Algorithm

    Get PDF
    This letter deals with inverse synthetic aperture radar (ISAR) autofocusing of noncooperative moving targets. The relative motion between the target and the sensor, which provides the angular diversity necessary for ISAR imagery, is also responsible for unwanted range migration and phase changes generating defocusing. In the case of noncooperative targets, the relative motion is unknown: the ISAR needs, hence, to implement an autofocus step [motion compensation (MoCo)] to achieve high resolution imaging. This task is typically carried out via the optimization of functionals based on general image quality parameters. In this letter, we propose the use of a fast and accurate MoCo algorithm based on the estimation of the Doppler parameters, thus fully coping with the nature of the imaging system. The effectiveness of the proposed method is proven on both simulated data and data acquired by operational systems

    Three-dimensional ISAR imaging: a review

    Get PDF
    Three-dimensional (3D) inverse synthetic aperture radar (ISAR) imaging has been proven feasible by combining traditional ISAR imaging and interferometry. Such technique, namely inteferometric ISAR (In-ISAR), allows for the main target scattering centres to be mapped into a 3D spatial domain as point clouds. Specifically, the use of an In-ISAR system can overcome the main geometrical interpretation issues imposed by the monostatic acquisition geometry as the problem of cross-range scaling and unknown image projection plane (IPP). However, some issues remain such as scatterer scintillation, shadowing effects, poor SNR etc., which limit the effectiveness of 3D imaging. A solution to such unsolved issues can be found in the use of multiple 3D views, which can be obtained exploiting either multi-temporal or multi-perspective configurations or a combination of both. This study aims to review the main concepts to produce multi-view 3D ISAR images by using In-ISAR systems also presenting real data collected with a multi-static In-ISAR system

    Application of Hybrid-Pol SAR in Oil-Spill Detection

    Get PDF
    In the application of oil-spill monitoring, the satellite revisit time needs to be as short as possible to identify minor spills before they can cause widespread damage. Simultaneously, it is required to capture a sufficient amount of information about the surface to clearly distinguish between oil-spilled and oil-free sea regions. The hybrid-polarimetry (hybrid-pol) synthetic aperture radar (SAR) system can be exploited for such capabilities. However, limited hybrid-pol-based oil-spill descriptors are reported in the literature in comparison with rich sets of full-polarimetry (full-pol)-based descriptors. In this letter, we establish a direct relation between hybrid-pol data and full-pol data under reflection-symmetry condition. Consequently, through the proposed work, the rich sets of full-pol-based oil-spill descriptors can be derived directly from the hybrid-pol datasets. For the validation of the proposed work, L-band ALOS PALSAR and UAVSAR datasets acquired over the Gulf of Mexico have been used

    Proportional similarity-based Openmax classifier for open set recognition in SAR images

    Get PDF
    Most of the existing Non-Cooperative Target Recognition (NCTR) systems follow the “closed world” assumption, i.e., they only work with what was previously observed. Nevertheless, the real world is relatively “open” in the sense that the knowledge of the environment is incomplete. Therefore, unknown targets can feed the recognition system at any time while it is operational. Addressing this issue, the Openmax classifier has been recently proposed in the optical domain to make convolutional neural networks (CNN) able to reject unknown targets. There are some fundamental limitations in the Openmax classifier that can end up with two potential errors: (1) rejecting a known target and (2) classifying an unknown target. In this paper, we propose a new classifier to increase the robustness and accuracy. The proposed classifier, which is inspired by the limitations of the Openmax classifier, is based on proportional similarity between the test image and different training classes. We evaluate our method by radar images of man-made targets from the Moving and Stationary Target Acquisition and Recognition (MSTAR) dataset. Moreover, a more in-depth discussion on the Openmax hyper-parameters and a detailed description of the Openmax functioning are given

    Optimized Nonlinear PRI Variation Strategy Using Knowledge-Guided Genetic Algorithm for Staggered SAR Imaging

    Get PDF
    Staggered synthetic aperture radar (SAR), which operates with variable pulse repetition interval (PRI), staggers blind areas to solve the blind range problem caused by constant PRI in conventional high-resolution wide-swath SAR imaging. The PRI variation strategy determines the blind area distribution, and thus has a significant influence on the imaging performance in staggered mode. Generally, the existing strategies based on linear PRI variation can control the blind areas in a straightforward way, which has achieved impressive results. However, the linearity of the PRI variation imposes regularity or even periodicity on the locations of the blind areas, which limits the distribution of the blind areas. The imaging performance has the potential to be further improved by introducing much more irregularity into the PRI sequences. To this end, this article proposes an optimized nonlinear PRI variation strategy for staggered SAR mode. First, a novel objective function is defined that quantitatively measures the uniformity of the blind area distribution along the slant range and the discontinuity of the blind area distribution along the azimuth. Subsequently, the optimum nonlinear PRI variation strategy is found using an optimization problem and the proposed objective function. A knowledge-guided genetic algorithm is proposed to solve the optimization problem. Comparisons with the existing linear variation strategies show that the proposed strategy can provide a superior imaging performance after reconstruction with a lower objective function value. Simulations and experiments on raw data generated in staggered SAR mode are performed to verify the effectiveness of the optimized nonlinear PRI variation strategy

    Virtual multichannel SAR for ground moving target imaging

    Get PDF
    Slow moving ground targets are invisible within synthetic aperture radar (SAR) images since they appear defocused and their backscattered signal completely overlap the focused ground return. In order for this targets to be detected and refocused the availability of some spatial degrees of freedom is required. This allows for space/slow time processing to be applied to mitigate the ground clutter. However, multichannel SAR (M-SAR) systems are very expensive and the requirements in terms of baseline length can be very restrictive. In this study a processing scheme that exploits high PRF single channel SAR system to emulate a multichannel SAR is presented. The signal model for both target and clutter components are presented and the difference with respect to an actual M-SAR are highlighted. The effectiveness of the proposed processing is then demonstrated on simulated a measured dataset

    Three-Dimensional Polarimetric InISAR Imaging of Non-Cooperative Targets

    Get PDF
    A new Polarimetric Interferometry Inverse Synthetic Aperture Radar (Pol-InISAR) 3D imaging method for non-cooperative targets is proposed in this paper. 3D imaging of non-cooperative targets becomes possible by combining additional information of interferometric phase along with conventional 2D ISAR imaging. In the previously reported single-polarimetry InISAR based 3D imaging, only a single-channel based interferometric phase is available that can be exploited to reconstruct the 3D ISAR image. This limits the ability to obtain a full target's scattering response and therefore limits the estimation of an accurate interferometric phase. To overcome this constraint, full-polarimetry information is being exploited in this paper, which allows to select the optimal polarimetric combination through which the highest coherence can be obtained. A higher coherence leads to a reduction (optimally a minimization) of the phase estimation error. Consequently, with an optimal phase estimation, an accurate 3D imaging of the target is possible. To validate this proposed Pol-InISAR based 3D imaging approach, both simulated and real datasets are taken under consideration
    • …
    corecore