17,937 research outputs found

    Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts

    Full text link
    Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect ratio. In this work we investigated the energetics and dynamical aspects of CNBs formed from rolling up CNRs. We have carried out molecular dynamics simulations using reactive empirical bond-order potentials. Our results show that similarly to CNSs, CNBs formation is dominated by two major energy contribution, the increase in the elastic energy due to the bending of the initial planar configuration (decreasing structural stability) and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers (increasing structural stability). Beyond a critical diameter value these scrolled structures can be even more stable (in terms of energy) than their equivalent planar configurations. In contrast to CNSs that require energy assisted processes (sonication, chemical reactions, etc.) to be formed, CNBs can be spontaneously formed from low temperature driven processes. Long CNBs (length of \sim 30.0 nm) tend to exhibit self-folded racket-like conformations with formation dynamics very similar to the one observed for long carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled structures. Possible synthetic routes to fabricate CNBs from graphene membranes are also addressed

    Topological Defects in Contracting Universes

    Get PDF
    We study the behaviour and consequences of cosmic string networks in contracting universes. They approximately behave during the collapse phase as a radiation fluids. Scaling solutions describing this are derived and tested against high-resolution numerical simulations. A string network in a contracting universe, together with the gravitational radiation it generates, can affect the dynamics of the universe both locally and globally, and be an important source of radiation, entropy and inhomogeneity. We discuss possible implications for bouncing and cyclic models.Comment: Shorter version of astro-ph/0206287. To appear in Phys. Rev. Let

    Radial dependence of line profile variability in seven O9--B0.5 stars

    Full text link
    Massive stars show a variety of spectral variability: presence of discrete absorption components in UV P-Cygni profiles, optical line profile variability, X-ray variability, radial velocity modulations. Our goal is to study the spectral variability of single OB stars to better understand the relation between photospheric and wind variability. For that, we rely on high spectral resolution, high signal-to-noise ratio optical spectra collected with the spectrograph NARVAL on the Telescope Bernard Lyot at Pic du Midi. We investigate the variability of twelve spectral lines by means of the Temporal Variance Spectrum (TVS). The selected lines probe the radial structure of the atmosphere, from the photosphere to the outer wind. We also perform a spectroscopic analysis with atmosphere models to derive the stellar and wind properties, and to constrain the formation region of the selected lines. We show that variability is observed in the wind lines of all bright giants and supergiants, on a daily timescale. Lines formed in the photosphere are sometimes variable, sometimes not. The dwarf stars do not show any sign of variability. If variability is observed on a daily timescale, it can also (but not always) be observed on hourly timescales, albeit with lower amplitude. There is a very clear correlation between amplitude of the variability and fraction of the line formed in the wind. Strong anti-correlations between the different part of the temporal variance spectrum are observed. Our results indicate that variability is stronger in lines formed in the wind. A link between photospheric and wind variability is not obvious from our study, since wind variability is observed whatever the level of photospheric variability. Different photospheric lines also show different degrees of variability.Comment: 13 pages, 9 figures + appendix. A&A accepted. Figures degraded for arxiv submissio

    Alterações nos atributos físicos do solo em decorrência da manipulação de resíduos da vegetação secundária.

    Get PDF
    O objetivo do estudo é verificar as alterações ocorridas nos atributos físicos do solo em decorrência da manipulação de resíduos de vegetação secundária em relação à queima, a fim de propor manejos alternativos e de maior sustentabilidade ao sistema vigente

    BRESEX: On board supervision, basic architecture and preliminary aspects for payload and space shuttle interface

    Get PDF
    Data relative to the on board supervision subsystem are presented which were considered in a conference between INPE and NASA personnel, with the purpose of initiating a joint effort leading to the implementation of the Brazilian remote sensing experiment - (BRESEX). The BRESEX should consist, basically, of a multispectral camera for Earth observation, to be tested in a future space shuttle flight

    Estabilidade de agregados como indicador da qualidade física do solo em terra preta de índio.

    Get PDF
    O presente trabalho teve como objetivo avaliar a qualidade física de uma TPI submetida a cultivos anuais intensivos em comparação com uma área em pousio por meio da estabilidade de agregados

    Renormalization group trajectories from resonance factorized S-matrices

    Full text link
    We propose and investigate a large class of models possessing resonance factorized S-matrices. The associated Casimir energy describes a rich pattern of renormalization group trajectories related to flows in the coset models based on the simply laced Lie Algebras. From a simplest resonance S-matrix, satisfying the ``ϕ3\phi^3-property'', we predict new flows in non-unitary minimal models.Comment: (7 pages) (no figures included
    corecore