10,658 research outputs found

    Exploiting Resolution-based Representations for MaxSAT Solving

    Full text link
    Most recent MaxSAT algorithms rely on a succession of calls to a SAT solver in order to find an optimal solution. In particular, several algorithms take advantage of the ability of SAT solvers to identify unsatisfiable subformulas. Usually, these MaxSAT algorithms perform better when small unsatisfiable subformulas are found early. However, this is not the case in many problem instances, since the whole formula is given to the SAT solver in each call. In this paper, we propose to partition the MaxSAT formula using a resolution-based graph representation. Partitions are then iteratively joined by using a proximity measure extracted from the graph representation of the formula. The algorithm ends when only one partition remains and the optimal solution is found. Experimental results show that this new approach further enhances a state of the art MaxSAT solver to optimally solve a larger set of industrial problem instances

    Magnetically assisted self-injection and radiation generation for plasma based acceleration

    Get PDF
    It is shown through analytical modeling and numerical simulations that external magnetic fields can relax the self-trapping thresholds in plasma based accelerators. In addition, the transverse location where self-trapping occurs can be selected by adequate choice of the spatial profile of the external magnetic field. We also find that magnetic-field assisted self-injection can lead to the emission of betatron radiation at well defined frequencies. This controlled injection technique could be explored using state-of-the-art magnetic fields in current/next generation plasma/laser wakefield accelerator experiments.Comment: 7 pages, 4 figures, accepted for publication in Plasma Physics and Controlled Fusio

    Dynamics and control of the expansion of finite-size plasmas produced in ultraintense laser-matter interactions

    Full text link
    The strong influence of the electron dynamics provides the possibility of controlling the expansion of laser-produced plasmas by appropriately shaping the laser pulse. A simple irradiation scheme is proposed to tailor the explosion of large deuterium clusters, inducing the formation of shock structures, capable of driving nuclear fusion reactions. Such a scenario has been thoroughly investigated, resorting to two- and three-dimensional particle-in-cell simulations. Furthermore, the intricate dynamics of ions and electrons during the collisionless expansion of spherical nanoplasmas has been analyzed in detail using a self-consistent ergodic-kinetic model. This study clarifies the transition from hydrodynamic-like to Coulomb-explosion regimes

    Magnetic control of particle-injection in plasma based accelerators

    Get PDF
    The use of an external transverse magnetic field to trigger and to control electron self-injection in laser- and particle-beam driven wakefield accelerators is examined analytically and through full-scale particle-in-cell simulations. A magnetic field can relax the injection threshold and can be used to control main output beam features such as charge, energy, and transverse dynamics in the ion channel associated with the plasma blowout. It is shown that this mechanism could be studied using state-of-the-art magnetic fields in next generation plasma accelerator experiments.Comment: 10 pages, 3 figure

    Genetic structure of Bertholletia excelsa populations from the Amazon at different spatial scales.

    Get PDF
    Population genetic structure and genetic diversity levels are important issues to understand population dynamics and to guide forest management plans. The Brazil nut tree (Bertholletia excelsa Bonpl.) is an endemic species, widely distributed through Amazonian upland forests and also an important species for the local extractive economy. Our aim was to analyze the genetic structure of Brazil nut trees at both fine and large scales throughout the Amazon Basin, contributing to the knowledge base on this species and to generate information to support plans for its conservation. We genotyped individuals from nine sites distributed in five regions of the Brazilian Amazon using 11 microsatellite loci. We found an excess of heterozygotes in most populations, with significant negative inbreeding coefficients (f) for five of them and the finescale structure, when present, was very small. These results, as a consequence of self-incompatibility, indicate that conservation plans for B. excelsa must include the maintenance of genetic diversity within populations to ensure viable amounts of seeds for both economic purposes and for the local persistence of the species.Published online: 24 March 2015

    Generalized Totalizer Encoding for Pseudo-Boolean Constraints

    Full text link
    Pseudo-Boolean constraints, also known as 0-1 Integer Linear Constraints, are used to model many real-world problems. A common approach to solve these constraints is to encode them into a SAT formula. The runtime of the SAT solver on such formula is sensitive to the manner in which the given pseudo-Boolean constraints are encoded. In this paper, we propose generalized Totalizer encoding (GTE), which is an arc-consistency preserving extension of the Totalizer encoding to pseudo-Boolean constraints. Unlike some other encodings, the number of auxiliary variables required for GTE does not depend on the magnitudes of the coefficients. Instead, it depends on the number of distinct combinations of these coefficients. We show the superiority of GTE with respect to other encodings when large pseudo-Boolean constraints have low number of distinct coefficients. Our experimental results also show that GTE remains competitive even when the pseudo-Boolean constraints do not have this characteristic.Comment: 10 pages, 2 figures, 2 tables. To be published in 21st International Conference on Principles and Practice of Constraint Programming 201

    A Bright Spatially-Coherent Compact X-ray Synchrotron Source

    Full text link
    Each successive generation of x-ray machines has opened up new frontiers in science, such as the first radiographs and the determination of the structure of DNA. State-of-the-art x-ray sources can now produce coherent high brightness keV x-rays and promise a new revolution in imaging complex systems on nanometre and femtosecond scales. Despite the demand, only a few dedicated synchrotron facilities exist worldwide, partially due the size and cost of conventional (accelerator) technology. Here we demonstrate the use of a recently developed compact laser-plasma accelerator to produce a well-collimated, spatially-coherent, intrinsically ultrafast source of hard x-rays. This method reduces the size of the synchrotron source from the tens of metres to centimetre scale, accelerating and wiggling a high electron charge simultaneously. This leads to a narrow-energy spread electron beam and x-ray source that is >1000 times brighter than previously reported plasma wiggler and thus has the potential to facilitate a myriad of uses across the whole spectrum of light-source applications.Comment: 5 pages, 4 figure
    • …
    corecore