18,593 research outputs found

    Gravitational energy of rotating black holes

    Get PDF
    In the teleparallel equivalent of general relativity the energy density of asymptotically flat gravitational fields can be naturaly defined as a scalar density restricted to a three-dimensional spacelike hypersurface ÎŁ\Sigma. Integration over the whole ÎŁ\Sigma yields the standard ADM energy. After establishing the reference space with zero gravitational energy we obtain the expression of the localized energy for a Kerr black hole. The expression of the energy inside a surface of constant radius can be explicitly calculated in the limit of small aa, the specific angular momentum. Such expression turns out to be exactly the same as the one obtained by means of the method preposed recently by Brown and York. We also calculate the energy contained within the outer horizon of the black hole for {\it any} value of aa. The result is practically indistinguishable from E=2MirE=2M_{ir}, where MirM_{ir} is the irreducible mass of the black hole.Comment: 18 pages, LaTex file, one figur

    Radial dependence of line profile variability in seven O9--B0.5 stars

    Full text link
    Massive stars show a variety of spectral variability: presence of discrete absorption components in UV P-Cygni profiles, optical line profile variability, X-ray variability, radial velocity modulations. Our goal is to study the spectral variability of single OB stars to better understand the relation between photospheric and wind variability. For that, we rely on high spectral resolution, high signal-to-noise ratio optical spectra collected with the spectrograph NARVAL on the Telescope Bernard Lyot at Pic du Midi. We investigate the variability of twelve spectral lines by means of the Temporal Variance Spectrum (TVS). The selected lines probe the radial structure of the atmosphere, from the photosphere to the outer wind. We also perform a spectroscopic analysis with atmosphere models to derive the stellar and wind properties, and to constrain the formation region of the selected lines. We show that variability is observed in the wind lines of all bright giants and supergiants, on a daily timescale. Lines formed in the photosphere are sometimes variable, sometimes not. The dwarf stars do not show any sign of variability. If variability is observed on a daily timescale, it can also (but not always) be observed on hourly timescales, albeit with lower amplitude. There is a very clear correlation between amplitude of the variability and fraction of the line formed in the wind. Strong anti-correlations between the different part of the temporal variance spectrum are observed. Our results indicate that variability is stronger in lines formed in the wind. A link between photospheric and wind variability is not obvious from our study, since wind variability is observed whatever the level of photospheric variability. Different photospheric lines also show different degrees of variability.Comment: 13 pages, 9 figures + appendix. A&A accepted. Figures degraded for arxiv submissio

    Feynman diagams coupled to three-dimensional quantum gravity

    Full text link
    A framework for quantum field theory coupled to three-dimensional quantum gravity is proposed. The coupling with quantum gravity regulates the Feynman diagrams. One recovers the usual Feynman amplitudes in the limit as the cosmological constant tends to zero.Comment: 7 pages. v2: minor corrections, added re

    On the influence that the ground electrode diameter has in the propulsion efficiency of an asymmetric capacitor in nitrogen gas

    Full text link
    In this work the propulsion force developed in an asymmetric capacitor will be calculated for three different diameters of the ground electrode. The used ion source is a small diameter wire, which generates a positive corona discharge in nitrogen gas directed to the ground electrode. By applying the fluid dynamic and electrostatic theories all hydrodynamic and electrostatic forces that act on the considered geometries will be computed in an attempt to provide a physical insight on the force mechanism that acts on the asymmetrical capacitors, and also to understand how to increase the efficiency of propulsion.Comment: 13 pages, 8 figures, Accepted for publication in "Physics of Plasmas

    Magnetically assisted self-injection and radiation generation for plasma based acceleration

    Get PDF
    It is shown through analytical modeling and numerical simulations that external magnetic fields can relax the self-trapping thresholds in plasma based accelerators. In addition, the transverse location where self-trapping occurs can be selected by adequate choice of the spatial profile of the external magnetic field. We also find that magnetic-field assisted self-injection can lead to the emission of betatron radiation at well defined frequencies. This controlled injection technique could be explored using state-of-the-art magnetic fields in current/next generation plasma/laser wakefield accelerator experiments.Comment: 7 pages, 4 figures, accepted for publication in Plasma Physics and Controlled Fusio
    • …
    corecore