20,088 research outputs found

    The Coester Line in Relativistic Mean Field Nuclear Matter

    Get PDF
    The Walecka model contains essentially two parameters that are associated with the Lorentz scalar (S) and vector (V) interactions. These parameters are related to a two-body interaction consisting of S and V, imposing the condition that the two-body binding energy is fixed. We have obtained a set of different values for the nuclear matter binding energies at equilibrium densities. We investigated the existence of a linear correlation between BNB_N and ρ0\rho_0, claimed to be universal for nonrelativistic systems and usually known as the Coester line, and found an approximate linear correlation only if V?SV?S remains constant. It is shown that the relativistic content of the model, which is related to the strength of V?SV?S, is responsible for the shift of the Coester line to the empirical region of nuclear matter saturation.Comment: 7 pages, 5 figure

    Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts

    Full text link
    Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect ratio. In this work we investigated the energetics and dynamical aspects of CNBs formed from rolling up CNRs. We have carried out molecular dynamics simulations using reactive empirical bond-order potentials. Our results show that similarly to CNSs, CNBs formation is dominated by two major energy contribution, the increase in the elastic energy due to the bending of the initial planar configuration (decreasing structural stability) and the energetic gain due to van der Waals interactions of the overlapping surface of the rolled layers (increasing structural stability). Beyond a critical diameter value these scrolled structures can be even more stable (in terms of energy) than their equivalent planar configurations. In contrast to CNSs that require energy assisted processes (sonication, chemical reactions, etc.) to be formed, CNBs can be spontaneously formed from low temperature driven processes. Long CNBs (length of \sim 30.0 nm) tend to exhibit self-folded racket-like conformations with formation dynamics very similar to the one observed for long carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled structures. Possible synthetic routes to fabricate CNBs from graphene membranes are also addressed

    Mapping the train model for earthquakes onto the stochastic sandpile model

    Full text link
    We perform a computational study of a variant of the ``train'' model for earthquakes [PRA 46, 6288 (1992)], where we assume a static friction that is a stochastic function of position rather than being velocity dependent. The model consists of an array of blocks coupled by springs, with the forces between neighbouring blocks balanced by static friction. We calculate the probability, P(s), of the occurrence of avalanches with a size s or greater, finding that our results are consistent with the phenomenology and also with previous models which exhibit a power law over a wide range. We show that the train model may be mapped onto a stochastic sandpile model and study a variant of the latter for non-spherical grains. We show that, in this case, the model has critical behaviour only for grains with large aspect ratio, as was already shown in experiments with real ricepiles. We also demonstrate a way to introduce randomness in a physically motivated manner into the model.Comment: 14 pages and 6 figures. Accepted in European Physical Journal

    Probing the gluon density of the proton in the exclusive photoproduction of vector mesons at the LHC: A phenomenological analysis

    Get PDF
    The current uncertainty on the gluon density extracted from the global parton analysis is large in the kinematical range of small values of the Bjorken - xx variable and low values of the hard scale Q2Q^2. An alternative to reduces this uncertainty is the analysis of the exclusive vector meson photoproduction in photon - hadron and hadron - hadron collisions. This process offers a unique opportunity to constrain the gluon density of the proton, since its cross section is proportional to the gluon density squared. In this paper we consider current parametrizations for the gluon distribution and estimate the exclusive vector meson photoproduction cross section at HERA and LHC using the leading logarithmic formalism. We perform a fit of the normalization of the γh\gamma h cross section and the value of the hard scale for the process and demonstrate that the current LHCb experimental data are better described by models that assume a slow increasing of the gluon distribution at small - xx and low Q2Q^2.Comment: 8 pages, 6 figures, 1 table. Version published in European Physical Journal

    Differential mesenteric fat deposition in bovines fed on silage or concentrate is independent of glycerol membrane permeability

    Get PDF
    © The Animal Consortium 2011In the meat industry, the manipulation of fat deposition in cattle is of pivotal importance to improve production efficiency, carcass composition and ultimately meat quality. There is an increasing interest in the identification of key factors and molecular mechanisms responsible for the development of specific fat depots. This study aimed at elucidating the influence of breed and diet on adipose tissue membrane permeability and fluidity and their interplay on fat deposition in bovines. Two Portuguese autochthonous breeds, Alentejana and Barrosã, recognized as late- and early-maturing breeds, respectively, were chosen to examine the effects of breed and diet on fat deposition and on adipose membrane composition and permeability. Twenty-four male bovines from these breeds were fed on silage-based or concentrate-based diets for 11 months. Animals were slaughtered to determine their live slaughter and hot carcass weights, as well as weights of subcutaneous and visceral adipose depots. Mesenteric fat depots were excised and used to isolate adipocyte membrane vesicles where cholesterol content, fatty acid profile as well as permeability and fluidity were determined. Total accumulation of neither subcutaneous nor visceral fat was influenced by breed. In contrast, mesenteric and omental fat depots weights were higher in concentrate-fed bulls relative to silage-fed animals. Membrane fluidity and permeability to water and glycerol in mesenteric adipose tissue were found to be independent of breed and diet. Moreover, the deposition of cholesterol and unsaturated fatty acids, which may influence membrane properties, were unchanged among experimental groups. Adipose membrane lipids from the mesenteric fat depot of ruminants were rich in saturated fatty acids, and unaffected by polyunsaturated fatty acids dietary levels. Our results provide evidence against the involvement of cellular membrane permeability to glycerol on fat accumulation in mesenteric fat tissue of concentrate-fed bovines, which is consistent with the unchanged membrane lipid profile found among experimental groups.This study was supported by Fundação para a Ciência e a Tecnologia (FCT) through grant PTDC/CVT/2006/66114 and individual fellowships to Ana P. Martins (SFRH/BD/2009/65046), Ana S. H. Costa (SFRH/BD/2009/61068) and Susana V. Martins (SFRH/BPD/2009/63019). Paula A. Lopes is a researcher from the program ‘‘Ciência 2008’’ from FC

    Uso de marcadores RAPD para avaliar a divergência genética em mamoneira.

    Get PDF
    bitstream/CNPA-2009-09/22283/1/COMTEC360.pd
    corecore