20,088 research outputs found
The Coester Line in Relativistic Mean Field Nuclear Matter
The Walecka model contains essentially two parameters that are associated
with the Lorentz scalar (S) and vector (V) interactions. These parameters are
related to a two-body interaction consisting of S and V, imposing the condition
that the two-body binding energy is fixed. We have obtained a set of different
values for the nuclear matter binding energies at equilibrium densities. We
investigated the existence of a linear correlation between and ,
claimed to be universal for nonrelativistic systems and usually known as the
Coester line, and found an approximate linear correlation only if remains
constant. It is shown that the relativistic content of the model, which is
related to the strength of , is responsible for the shift of the Coester
line to the empirical region of nuclear matter saturation.Comment: 7 pages, 5 figure
Curved Graphene Nanoribbons: Structure and Dynamics of Carbon Nanobelts
Carbon nanoribbons (CNRs) are graphene (planar) structures with large aspect
ratio. Carbon nanobelts (CNBs) are small graphene nanoribbons rolled up into
spiral-like structures, i. e., carbon nanoscrolls (CNSs) with large aspect
ratio. In this work we investigated the energetics and dynamical aspects of
CNBs formed from rolling up CNRs. We have carried out molecular dynamics
simulations using reactive empirical bond-order potentials. Our results show
that similarly to CNSs, CNBs formation is dominated by two major energy
contribution, the increase in the elastic energy due to the bending of the
initial planar configuration (decreasing structural stability) and the
energetic gain due to van der Waals interactions of the overlapping surface of
the rolled layers (increasing structural stability). Beyond a critical diameter
value these scrolled structures can be even more stable (in terms of energy)
than their equivalent planar configurations. In contrast to CNSs that require
energy assisted processes (sonication, chemical reactions, etc.) to be formed,
CNBs can be spontaneously formed from low temperature driven processes. Long
CNBs (length of 30.0 nm) tend to exhibit self-folded racket-like
conformations with formation dynamics very similar to the one observed for long
carbon nanotubes. Shorter CNBs will be more likely to form perfect scrolled
structures. Possible synthetic routes to fabricate CNBs from graphene membranes
are also addressed
Mapping the train model for earthquakes onto the stochastic sandpile model
We perform a computational study of a variant of the ``train'' model for
earthquakes [PRA 46, 6288 (1992)], where we assume a static friction that is a
stochastic function of position rather than being velocity dependent. The model
consists of an array of blocks coupled by springs, with the forces between
neighbouring blocks balanced by static friction. We calculate the probability,
P(s), of the occurrence of avalanches with a size s or greater, finding that
our results are consistent with the phenomenology and also with previous models
which exhibit a power law over a wide range. We show that the train model may
be mapped onto a stochastic sandpile model and study a variant of the latter
for non-spherical grains. We show that, in this case, the model has critical
behaviour only for grains with large aspect ratio, as was already shown in
experiments with real ricepiles. We also demonstrate a way to introduce
randomness in a physically motivated manner into the model.Comment: 14 pages and 6 figures. Accepted in European Physical Journal
Probing the gluon density of the proton in the exclusive photoproduction of vector mesons at the LHC: A phenomenological analysis
The current uncertainty on the gluon density extracted from the global parton
analysis is large in the kinematical range of small values of the Bjorken -
variable and low values of the hard scale . An alternative to reduces this
uncertainty is the analysis of the exclusive vector meson photoproduction in
photon - hadron and hadron - hadron collisions. This process offers a unique
opportunity to constrain the gluon density of the proton, since its cross
section is proportional to the gluon density squared. In this paper we consider
current parametrizations for the gluon distribution and estimate the exclusive
vector meson photoproduction cross section at HERA and LHC using the leading
logarithmic formalism. We perform a fit of the normalization of the
cross section and the value of the hard scale for the process and demonstrate
that the current LHCb experimental data are better described by models that
assume a slow increasing of the gluon distribution at small - and low
.Comment: 8 pages, 6 figures, 1 table. Version published in European Physical
Journal
Differential mesenteric fat deposition in bovines fed on silage or concentrate is independent of glycerol membrane permeability
© The Animal Consortium 2011In the meat industry, the manipulation of fat deposition in cattle is of pivotal importance to improve production efficiency, carcass composition and ultimately meat quality. There is an increasing interest in the identification of key factors and molecular mechanisms responsible for the development of specific fat depots. This study aimed at elucidating the influence of breed and diet on adipose tissue membrane permeability and fluidity and their interplay on fat deposition in bovines. Two Portuguese autochthonous breeds, Alentejana and Barrosã, recognized as late- and early-maturing breeds, respectively, were chosen to examine the effects of breed and diet on fat deposition and on adipose membrane composition and permeability. Twenty-four male bovines from these breeds were fed on silage-based or concentrate-based diets for 11 months. Animals were slaughtered to determine their live slaughter and hot carcass weights, as well as weights of subcutaneous and visceral adipose depots. Mesenteric fat depots were excised and used to isolate adipocyte membrane vesicles where cholesterol content, fatty acid profile as well as permeability and fluidity were determined. Total accumulation of neither subcutaneous nor visceral fat was influenced by breed. In contrast, mesenteric and omental fat depots weights were higher in concentrate-fed bulls relative to silage-fed animals. Membrane fluidity and permeability to water and glycerol in mesenteric adipose tissue were found to be independent of breed and diet. Moreover, the deposition of cholesterol and unsaturated fatty acids, which may influence membrane properties, were unchanged among experimental groups. Adipose membrane lipids from the mesenteric fat depot of ruminants were rich in saturated fatty acids, and unaffected by polyunsaturated fatty acids dietary levels. Our results provide evidence against the involvement of cellular membrane permeability to glycerol on fat accumulation in mesenteric fat tissue of concentrate-fed bovines, which is consistent with the unchanged membrane lipid profile found among experimental groups.This study was supported by Fundação para a Ciência e a Tecnologia (FCT) through grant PTDC/CVT/2006/66114 and individual fellowships to Ana P. Martins (SFRH/BD/2009/65046), Ana S. H. Costa (SFRH/BD/2009/61068) and Susana V. Martins (SFRH/BPD/2009/63019). Paula A. Lopes is a researcher from the program ‘‘Ciência 2008’’ from FC
Uso de marcadores RAPD para avaliar a divergência genética em mamoneira.
bitstream/CNPA-2009-09/22283/1/COMTEC360.pd
- …