16,490 research outputs found

    Theory of controlled quantum dynamics

    Get PDF
    We introduce a general formalism, based on the stochastic formulation of quantum mechanics, to obtain localized quasi-classical wave packets as dynamically controlled systems, for arbitrary anharmonic potentials. The control is in general linear, and it amounts to introduce additional quadratic and linear time-dependent terms to the given potential. In this way one can construct for general systems either coherent packets moving with constant dispersion, or dynamically squeezed packets whose spreading remains bounded for all times. In the standard operatorial framework our scheme corresponds to a suitable generalization of the displacement and scaling operators that generate the coherent and squeezed states of the harmonic oscillator.Comment: LaTeX, A4wide, 28 pages, no figures. To appear in J. Phys. A: Math. Gen., April 199

    Developing a New Partnership

    Get PDF
    Many factors contribute to the success and impact of a Mathematics Resource Teacher on K-5 mathematics instruction. Developing a strong partnership with stakeholders and sharing a common vision for quality mathematics instruction are key factors in the successful implementation of the Mathematics Resource Teacher program. In this article, we share the experience of elementary school principal, Timothy Martino, as he prepared to open a new elementary school in August 2012. Frederick Douglass Elementary opened with a full-time, school-embedded Mathematics Resource Teacher, Mrs. Cindy Brady. Timothy Martino and Mrs. Brady developed a partnership with division-level central office staff and with the teachers of Frederick Douglass Elementary. Thus, they began the journey toward improving mathematics instruction for students through a team approach

    Linear-Quadratic NN-person and Mean-Field Games with Ergodic Cost

    Full text link
    We consider stochastic differential games with NN players, linear-Gaussian dynamics in arbitrary state-space dimension, and long-time-average cost with quadratic running cost. Admissible controls are feedbacks for which the system is ergodic. We first study the existence of affine Nash equilibria by means of an associated system of NN Hamilton-Jacobi-Bellman and NN Kolmogorov-Fokker-Planck partial differential equations. We give necessary and sufficient conditions for the existence and uniqueness of quadratic-Gaussian solutions in terms of the solvability of suitable algebraic Riccati and Sylvester equations. Under a symmetry condition on the running costs and for nearly identical players we study the large population limit, NN tending to infinity, and find a unique quadratic-Gaussian solution of the pair of Mean Field Game HJB-KFP equations. Examples of explicit solutions are given, in particular for consensus problems.Comment: 31 page

    One-handed hammer-spanner for chucks

    Get PDF
    Modified spanner wrench with a heavy hammer-piece hinged to its handle allows one hand removal of a tool from a chuck

    Dymanics of Generalized Coherent States

    Get PDF
    We show that generalized coherent states follow Schr\"{o}dinger dynamics in time-dependent potentials. The normalized wave-packets follow a classical evolution without spreading; in turn, the Schr\"{o}dinger potential depends on the state through the classical trajectory. This feedback mechanism with continuous dynamical re-adjustement allows the packets to remain coherent indefinetely.Comment: 8 pages, plain latex, no figure

    Diffusion Processes and Coherent States

    Full text link
    It is shown that stochastic processes of diffusion type possess, in all generality, a structure of uncertainty relations and of coherent and squeezed states. This fact is used to obtain, via Nelson stochastic formulation of quantum mechanics, the harmonic-oscillator coherent and squeezed states. The method allows to derive new minimum uncertainty states in time-dependent oscillator potentials and for the Caldirola-Kanai model of quantum damped oscillator.Comment: 11 pages, plain LaTe

    Quantum Groups, Coherent States, Squeezing and Lattice Quantum Mechanics

    Get PDF
    By resorting to the Fock--Bargmann representation, we incorporate the quantum Weyl--Heisenberg (qq-WH) algebra into the theory of entire analytic functions. The main tool is the realization of the qq--WH algebra in terms of finite difference operators. The physical relevance of our study relies on the fact that coherent states (CS) are indeed formulated in the space of entire analytic functions where they can be rigorously expressed in terms of theta functions on the von Neumann lattice. The r\^ole played by the finite difference operators and the relevance of the lattice structure in the completeness of the CS system suggest that the qq--deformation of the WH algebra is an essential tool in the physics of discretized (periodic) systems. In this latter context we define a quantum mechanics formalism for lattice systems.Comment: 22 pages, TEX file, DFF188/9/93 Firenz

    MAGDA: A Mobile Agent based Grid Architecture

    Get PDF
    Mobile agents mean both a technology and a programming paradigm. They allow for a flexible approach which can alleviate a number of issues present in distributed and Grid-based systems, by means of features such as migration, cloning, messaging and other provided mechanisms. In this paper we describe an architecture (MAGDA – Mobile Agent based Grid Architecture) we have designed and we are currently developing to support programming and execution of mobile agent based application upon Grid systems
    • …
    corecore