12,932 research outputs found
Using self-categorization theory to uncover the framing of the 2015 Rugby World Cup: a cross-cultural comparison of three nations’ newspapers
Research into the framing of sporting events has been extensively studied to uncover newspaper bias in the coverage of global sporting events. Through discourse, the media attempt to capture, build, and maintain audiences for the duration of sporting events through the use of multiple narratives and/or storylines. Little research has looked at the ways in which the same event is reported across different nations, and media representations of the Rugby World Cup have rarely featured in discussions of the framing of sport events. The present study highlights the different ways in which rugby union is portrayed across the three leading Southern Hemisphere nations in the sport. It also shows the prominence of nationalistic discourse across those nations and importance of self-categorizations in newspaper narratives.</jats:p
Ensuring cost-effective heat exchanger network design for non-continuous processes
The variation in stream conditions over time inevitably adds significant complexity to the task of integrating non-continuous processes. The Time Averaging Method (TAM), where stream conditions are simply averaged across the entire time cycle, leads to unrealistic energy targets for direct heat recovery and consequently to Heat Exchanger Network (HEN) designs that are in fact suboptimal. This realisation led to the development of the Time Slice Method (TSM) that instead considers each time interval separately, and can be used to reach accurate targets and to design the appropriate HEN to maximise heat recovery. However, in practise the HENs often require excessive exchanger surface area, which renders them unfeasible when capital costs are taken in to account. An extension of the TSM that reduces the required overall exchanger surface area and systematically distributes it across the stream matches is proposed. The methodology is summarised with the help of a simple case study and further improvement opportunities are discusse
Carbon Emissions Pinch Analysis (CEPA) for emissions reduction in the New Zealand electricity sector
Carbon Emissions Pinch Analysis (CEPA) is a recent extension of traditional thermal and mass pinch analysis to the area of emissions targeting and planning on a macro-scale (i.e. economy wide). This paper presents an extension to the current methodology that accounts for increased demand and a carbon pinch analysis of the New Zealand electricity industry while illustrating some of the issues with realising meaningful emissions reductions. The current large proportion of renewable generation (67% in 2007) complicates extensive reduction of carbon emissions from electricity generation. The largest growth in renewable generation is expected to come from geothermal generation followed by wind and hydro. A four fold increase in geothermal generation capacity is needed in addition to large amounts of new wind generation to reduce emissions to around 1990 levels and also meet projected demand. The expected expansion of geothermal generation in New Zealand raises issues of GHG emissions from the geothermal fields. The emissions factors between fields can vary by almost two orders of magnitude making predictions of total emissions highly site specific
WinGEMS modelling and pinch analysis of a paper machine for utility reduction
A multi-ply paper machine process model was developed using WinGEMS and the stream data produced was used to conduct a pinch analysis. The product stream was excluded from the analysis and the composite curves display the enthalpy contained only in the inputs and outputs to the various sections of the paper machine. The pinch point for the overall paper machine was 55.9 C while the minimum hot utility target was 170 MW. Occurrences of cross pinch heat transfer were identified and discussed. Heat recovery options for heating of the fresh water showers, using waste heat streams were investigated. Steam savings of over 14 MW could be achieved by recovering heat from two waste streams that currently go directly to drain with no heat recovery taking place. The use of pinch analysis for utilities targeting under non-continuous conditions was examined. Finally, the feasibility of integrating non-conventional technologies, such as heat storage, is discussed
Carbon emissions pinch analysis (CEPA) for emissions reduction in the New Zealand electricity sector
Carbon Emissions Pinch Analysis (CEPA) is a recent extension of traditional thermal and mass pinch analysis to the area of emissions targeting and planning on a macroscale (i.e. economy wide). This paper presents a carbon pinch analysis of the New Zealand electricity industry and illustrates some of the issues with realising meaningful emissions reductions. The current large proportion of renewable generation sources (~67% in 2007) complicates wholesale emissions reductions. The biggest growth in renewable generation is expected to come from geothermal energy followed by wind and hydro. A four fold increase in geothermal generation capacity is needed in addition to large amounts of new wind generation to reduce emissions to around 1990 levels and also meet projected demand. The expected expansion of geothermal generation in New Zealand raises issues of GHG emissions from the geothermal fields. The emissions factors between fields can vary by almost two orders of magnitude making predictions of total emissions highly site specific
Importance of understanding variable and transient energy demand in large multi-product industrial plants for process integration
There have been some news releases claiming that Professor Henle in Germany has found the chemical identity of UMF, and that in future chemical analysis will be used instead of assays of antibacterial activity to indicate the level of UMF in manuka honey. Both of these claims are misleading. Because the level of active substance in manuka honey is an unreliable indication of the level of antibacterial activity and can be very misleading, it is hard to see any commercial advantage for it to be used to indicate antibacterial activity other than if someone wanted to fool the consumer into thinking that the higher numbers are giving them a level of antibacterial activity that is far higher than they are really getting
Atomic spectrometry update. Clinical and biological materials, foods and beverages
This review discusses developments in elemental mass spectrometry, atomic absorption, emission and fluorescence, XRF and LIBS, as applied to the analysis of specimens of clinical interest, foods and beverages. Sample preparation procedures and quality assurance are also included.</p
- …