636 research outputs found

    In Memoriam: John R. Hargrove, Sr.

    Get PDF

    X-Ray Scattering Measurements of the Transient Structure of a Driven Charge-Density-Wave

    Full text link
    We report time-resolved x-ray scattering measurements of the transient structural response of the sliding {\bf Q}1_{1} charge-density-wave (CDW) in NbSe3_{3} to a reversal of the driving electric field. The observed time scale characterizing this response at 70K varies from ∼\sim 15 msec for driving fields near threshold to ∼\sim 2 msec for fields well above threshold. The position and time-dependent strain of the CDW is analyzed in terms of a phenomenological equation of motion for the phase of the CDW order parameter. The value of the damping constant, γ=(3.2±0.7)×10−19\gamma = (3.2 \pm 0.7) \times 10^{-19} eV ⋅\cdot seconds ⋅\cdot \AA−3^{-3}, is in excellent agreement with the value determined from transport measurements. As the driving field approaches threshold from above, the line shape becomes bimodal, suggesting that the CDW does not depin throughout the entire sample at one well-defined voltage.Comment: revtex 3.0, 7 figure

    Predicting Broccoli Development: I. Development Is Predominantly Determined By Temperature Rather Than Photoperiod

    Get PDF
    Predictive models of broccoli (Brassica oleracea L. var. italica Plenck) ontogeny will aid farmers who need to forecast changes in crop maturity arising from variable climatic conditions so that their forward marketing arrangements can match their anticipated supply. The objective of this study was to quantify the temperature and photoperiod responses of development in a sub-tropical environment from emergence to floral initiation (EFI), and from floral initiation to harvest maturity (FIHM). Three cultivars, ('Fiesta', 'Greenbelt' and 'Marathon') were sown on eight dates from 11 March to 22 May 1997 and grown under natural and extended (16 h) photoperiods at Gatton College, south-east Queensland, under non-limiting conditions of water and nutrient supply. Climatic data, dates of emergence, floral initiation and harvest maturity were obtained. The estimated base (Tbase) and optimum (Topt) temperatures of 0 and 20 degrees C, respectively were consistent across cultivars, but thermal time requirements were cultivar specific. Differences in thermal time between cultivars during FIHM were small and of little practical importance, but differences in thermal time during EFI were large. Sensitivity to photoperiod and solar radiation was low in the three cultivars used. When the thermal time models were tested on independent data for five cultivars ('Fiesta', 'Greenbelt', 'Marathon', 'CMS Liberty' and 'Triathlon') grown as commercial crops over two years, they adequately predicted floral initiation and harvest maturity

    Critical Dynamics of Magnets

    Get PDF
    We review our current understanding of the critical dynamics of magnets above and below the transition temperature with focus on the effects due to the dipole--dipole interaction present in all real magnets. Significant progress in our understanding of real ferromagnets in the vicinity of the critical point has been made in the last decade through improved experimental techniques and theoretical advances in taking into account realistic spin-spin interactions. We start our review with a discussion of the theoretical results for the critical dynamics based on recent renormalization group, mode coupling and spin wave theories. A detailed comparison is made of the theory with experimental results obtained by different measuring techniques, such as neutron scattering, hyperfine interaction, muon--spin--resonance, electron--spin--resonance, and magnetic relaxation, in various materials. Furthermore we discuss the effects of dipolar interaction on the critical dynamics of three--dimensional isotropic antiferromagnets and uniaxial ferromagnets. Special attention is also paid to a discussion of the consequences of dipolar anisotropies on the existence of magnetic order and the spin--wave spectrum in two--dimensional ferromagnets and antiferromagnets. We close our review with a formulation of critical dynamics in terms of nonlinear Langevin equations.Comment: Review article (154 pages, figures included

    Upper critical field for underdoped high-T_c superconductors. Pseudogap and stripe--phase

    Full text link
    We investigate the upper critical field in a stripe--phase and in the presence of a phenomenological pseudogap. Our results indicate that the formation of stripes affects the Landau orbits and results in an enhancement of Hc2H_{c2}. On the other hand, phenomenologically introduced pseudogap leads to a reduction of the upper critical field. This effect is of particular importance when the magnitude of the gap is of the order of the superconducting transition temperature. We have found that a suppression of the upper critical field takes place also for the gap that originates from the charge--density waves.Comment: 7 pages, 5 figure

    Paraspeckle subnuclear bodies depend on dynamic heterodimerisation of DBHS RNA-binding proteins via their structured domains

    Get PDF
    RNA-binding proteins of the DBHS (Drosophila Behavior Human Splicing) family, NONO, SFPQ, and PSPC1 have numerous roles in genome stability and transcriptional and posttranscriptional regulation. Critical to DBHS activity is their recruitment to distinct subnuclear locations, for example, paraspeckle condensates, where DBHS proteins bind to the long noncoding RNA NEAT1 in the first essential step in paraspeckle formation. To carry out their diverse roles, DBHS proteins form homodimers and heterodimers, but how this dimerization influences DBHS localization and function is unknown. Here, we present an inducible GFP-NONO stable cell line and use it for live-cell 3D-structured illumination microscopy, revealing paraspeckles with dynamic, twisted elongated structures. Using siRNA knockdowns, we show these labeled paraspeckles consist of GFP-NONO/endogenous SFPQ dimers and that GFP-NONO localization to paraspeckles depends on endogenous SFPQ. Using purified proteins, we confirm that partner swapping between NONO and SFPQ occurs readily in vitro. Crystallographic analysis of the NONOSFPQ heterodimer reveals conformational differences to the other DBHS dimer structures, which may contribute to partner preference, RNA specificity, and subnuclear localization. Thus overall, our study suggests heterodimer partner availability is crucial for NONO subnuclear distribution and helps explain the complexity of both DBHS protein and paraspeckle dynamics through imaging and structural approaches.Pei Wen Lee, Andrew C. Marshall, Gavin J. Knott, Simon Kobelke, Luciano Martelotto, Ellie Cho, Paul J. McMillan, Mihwa Lee, Charles S. Bond, and Archa H. Fo

    Why do we need a theory and metrics of technology upgrading?

    Get PDF
    This paper discusses why we need theory and metrics of technology upgrading. It critically reviews the existing approaches to technology upgrading and motivates build-up of theoretically relevant but empirically grounded middle level conceptual and statistical framework which could illuminate a type of challenges relevant for economies at different income levels. It conceptualizes technology upgrading as three dimensional processes composed of intensity and different types of technology upgrading through various types of innovation and technology activities; broadening of technology upgrading through different forms of technology and knowledge diversification, and interaction with global economy through knowledge import, adoption and exchange. We consider this to be necessary first step towards theory and metrics of technology upgrading and generation of more relevant composite indicator of technology upgrading

    Global agricultural intensification during climate change: A role for genomics

    Get PDF
    Summary: Agriculture is now facing the 'perfect storm' of climate change, increasing costs of fertilizer and rising food demands from a larger and wealthier human population. These factors point to a global food deficit unless the efficiency and resilience of crop production is increased. The intensification of agriculture has focused on improving production under optimized conditions, with significant agronomic inputs. Furthermore, the intensive cultivation of a limited number of crops has drastically narrowed the number of plant species humans rely on. A new agricultural paradigm is required, reducing dependence on high inputs and increasing crop diversity, yield stability and environmental resilience. Genomics offers unprecedented opportunities to increase crop yield, quality and stability of production through advanced breeding strategies, enhancing the resilience of major crops to climate variability, and increasing the productivity and range of minor crops to diversify the food supply. Here we review the state of the art of genomic-assisted breeding for the most important staples that feed the world, and how to use and adapt such genomic tools to accelerate development of both major and minor crops with desired traits that enhance adaptation to, or mitigate the effects of climate change. &gt

    Accelerometer-Measured Moderate to Vigorous Physical Activity and Incidence Rates of Falls in Older Women

    Get PDF
    Objectives: To examine whether moderate to vigorous physical activity (MVPA) measured using accelerometry is associated with incident falls and whether associations differ according to physical function or history of falls. Design: Prospective study with baseline data collection from 2012 to 2014 and 1 year of follow-up. Setting: Women's Health Initiative participants living in the United States. Participants: Ambulatory women aged 63 to 99 (N = 5,545). Measurements: Minutes of MVPA per day measured using an accelerometer, functional status measured using the Short Physical Performance Battery (SPPB), fall risk factors assessed using a questionnaire, fall injuries assessed in a telephone interview, incident falls ascertained from fall calendars. Results: Incident rate ratios (IRRs) revealed greater fall risk in women in the lowest quartile of MVPA compared to those in the highest (IRR = 1.18, 95% confidence interval = 1.01–1.38), adjusted for age, race and ethnicity, and fall risk factors. Fall rates were not significantly associated with MVPA in women with high SPPB scores (9–12) or one or fewer falls in the previous year, but in women with low SPPB scores (≤ 8) or a history of frequent falls, fall rates were higher in women with lower MVPA levels than in those with higher levels (interaction P <.03 and <.001, respectively). Falls in women with MVPA above the median were less likely to involve injuries requiring medical treatment (9.9%) than falls in women with lower MVPA levels (13.0%) (P <.001). Conclusion: These findings indicate that falls are not more common or injurious in older women who engage in higher levels of MVPA. These findings support encouraging women to engage in the amounts and types of MVPA that they prefer. Older women with low physical function or frequent falls with low levels of MVPA are a high-risk group for whom vigilance about falls prevention is warranted
    • …
    corecore