23 research outputs found

    Photonic Biosensor Assays to Detect and Distinguish Subspecies of Francisella tularensis

    Get PDF
    The application of photonic biosensor assays to diagnose the category-A select agent Francisella tularensis was investigated. Both interferometric and long period fiber grating sensing structures were successfully demonstrated; both these sensors are capable of detecting the optical changes induced by either immunological binding or DNA hybridization. Detection was made possible by the attachment of DNA probes or immunoglobulins (IgG) directly to the fiber surface via layer-by-layer electrostatic self-assembly. An optical fiber biosensor was tested using a standard transmission mode long period fiber grating of length 15 mm and period 260 μm, and coated with the IgG fraction of antiserum to F. tularensis. The IgG was deposited onto the optical fiber surface in a nanostructured film, and the resulting refractive index change was measured using spectroscopic ellipsometry. The presence of F. tularensis was detected from the decrease of peak wavelength caused by binding of specific antigen. Detection and differentiation of F. tularensis subspecies tularensis (type A strain TI0902) and subspecies holarctica (type B strain LVS) was further accomplished using a single-mode multi-cavity fiber Fabry-Perot interferometric sensor. These sensors were prepared by depositing seven polymer bilayers onto the fiber tip followed by attaching one of two DNA probes: (a) a 101-bp probe from the yhhW gene unique to type-A strains, or (b) a 117-bp probe of the lpnA gene, common to both type-A and type-B strains. The yhhW probe was reactive with the type-A, but not the type-B strain. Probe lpnA was reactive with both type-A and type-B strains. Nanogram quantities of the target DNA could be detected, highlighting the sensitivity of this method for DNA detection without the use of PCR. The DNA probe reacted with 100% homologous target DNA, but did not react with sequences containing 2-bp mismatches, indicating the high specificity of the assay. These assays will fill an important void that exists for rapid, culture-free, and field-compatible diagnosis of F. tularensis

    Disposable genosensor, a new tool for the detection of NOS-terminator, a genetic element present in GMOs

    No full text
    Legislation enacted worldwide to regulate the presence of genetically modified organisms (GMOs) in crops, foods and ingredients, necessitated the development of reliable and sensitive methods for GMO detection. An indicator based electrochemical disposable genosensor for the voltammetric detection of NOS-terminator, a genetic element present in GMOs is described as a possible substitute method for the common technique of gel electrophoresis and fluorescent image analysis. The biosensor relies on the immobilization of the 25-mer single stranded oligonucleotides (probe) related to NOS-terminator DNA sequence and the relative binding of this sequence with the polymerase chain reaction (PCR) amplified samples from certified reference material (CRM) of Roundup Ready soybean (Fluka) at a screen printed electrode (SPE). The extent of hybridization between the probe and target DNA is determined by using square wave voltammetry (SWV) with moving average baseline correction and methylene blue (3,7- bis (dimethylamino)phenothiazin-5-ium chloride, MB), as the hybridization indicator. The difference between the MB signals, obtained from the hybrid modified and probe modified SPEs, is used to detect GMOs from PCR amplified DNA samples. Numerous factors affecting the hybridization and indicator binding reactions are optimized to maximize the sensitivity. © 2003 Elsevier Ltd. All rights reserved

    Using surface-enhanced Raman spectroscopy and electrochemically driven melting to discriminate Yersinia pestis from Y. pseudotuberculosis based on single nucleotide polymorphisms within unpurified polymerase chain reaction amplicons

    No full text
    The development of sensors for the detection of pathogen-specific DNA, including relevant species/strain level discrimination, is critical in molecular diagnostics with major impacts in areas such as bioterrorism and food safety. Herein, we use electrochemically driven denaturation assays monitored by surface-enhanced Raman spectroscopy (SERS) to target single nucleotide polymorphisms (SNPs) that distinguish DNA amplicons generated from Yersinia pestis, the causative agent of plague, from the closely related species Y. pseudotuberculosis. Two assays targeting SNPs within the groEL and metH genes of these two species have been successfully designed. Polymerase chain reaction (PCR) was used to produce Texas Red labeled single-stranded DNA (ssDNA) amplicons of 262 and 251 bases for the groEL and metH targets, respectively. These amplicons were used in an unpurified form to hybridize to immobilized probes then subjected to electrochemically driven melting. In all cases electrochemically driven melting was able to discriminate between fully homologous DNA and that containing SNPs. The metH assay was particularly challenging due to the presence of only a single base mismatch in the middle of the 251 base long PCR amplicon. However, manipulation of assay conditions (conducting the electrochemical experiments at 10 °C) resulted in greater discrimination between the complementary and mismatched DNA. Replicate data were collected and analyzed for each duplex on different days, using different batches of PCR product and different sphere segment void (SSV) substrates. Despite the variability introduced by these differences, the assays are shown to be reliable and robust providing a new platform for strain discrimination using unpurified PCR samples
    corecore