7 research outputs found

    Design of hydrogen production systems powered by solar and wind energy: An insight into the optimal size ratios

    Get PDF
    Green hydrogen is expected to play a crucial role in the future energy landscape, particularly in the pursuit of deep decarbonisation strategies within hard-to-abate sectors, such as the chemical and steel industries and heavy-duty transport. However, competitive production costs are vital to unlock the full potential of green hydrogen. In the case of green hydrogen produced via water electrolysis powered by fluctuating renewable energy sources, the design of the plant plays a pivotal role in achieving market-competitive production costs. The present work investigates the optimal design of power-to-hydrogen systems powered by renewable sources (solar and wind energy). A detailed model of a power-to-hydrogen system is developed: an energy simulation framework, coupled with an economic assessment, provides the hydrogen production cost as a function of the component sizes. By spanning a wide range of size ratios, namely the ratio between the size of the renewable generator and the size of the electrolyser, the cost-optimal design point (minimum hydrogen production cost) is identified. This investigation is carried out for three plant configurations: solar-only, wind-only and hybrid. The objective is to extend beyond the analysis of a specific case study and provide broadly applicable considerations for the optimal design of green hydrogen production systems. In particular, the rationale behind the cost-optimal size ratio is unveiled and discussed through energy (utilisation factors) and economic (hydrogen production cost) indicators. A sensitivity analysis on investment costs for the power-to-hydrogen technologies is also conducted to explore various technological learning paths from today to 2050. The optimal size ratio is found to be a trade-off between the utilisation factors of the electrolyser and the renewable generator, which exhibit opposite trends. Moreover, the costs of the power-to-hydrogen technologies are a key factor in determining the optimal size ratio: depending on these costs, the optimal solution tends to improve one of the two utilization factors at the expense of the other. Finally, the optimal size ratio is foreseen to decrease in the upcoming years, primarily due to the reduction in the investment cost of the electrolyser

    Tecnologia, Paesaggio, Ambiente. Selezione bibliografica finalizzata alla progettazione ambientale

    No full text
    Le problematiche ambientali hanno assunto nel corso degli anni un ruolo sempre più rilevante nella cultura architettonica contemporanea, configurando in seno alla disciplina un'area specifica e ben determinata, in via di consolidamento a livello teorico così come nell'operatività concreta. La selezione bibliografica proposta attraverso un'articolazione concettuale ed operativa dei testi, suddivisi secondo le voci "paesaggio", "ambiente", e nelle relative sottosezioni, cerca di rispondere a criteri di diversificazione degli approcci per un ampliamento delle conoscenze non solo di base, ma anche per quanto riguarda la strumentazione complessa per le applicazioni tecnico-operative

    GRAd-COV2 vaccine provides potent and durable humoral and cellular immunity to SARS-CoV-2 in randomized placebo-controlled phase 2 trial

    No full text
    The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic and heterologous immunization approaches implemented worldwide for booster doses call for diversified vaccine portfolios. GRAd-COV2 is a gorilla adenovirus-based COVID-19 vaccine candidate encoding prefusion-stabilized spike. The safety and immunogenicity of GRAd-COV2 is evaluated in a dose-and regimen-finding phase 2 trial (COVITAR study, ClinicalTrials.gov: NCT04791423) whereby 917 eligible participants are randomized to receive a single intramuscular GRAd-COV2 administration followed by placebo, or two vaccine injections, or two doses of placebo, spaced over 3 weeks. Here, we report that GRAd-COV2 is well tolerated and induces robust immune responses after a single immunization; a second administration increases binding and neutralizing antibody titers. Potent, variant of concern (VOC) cross-reactive spike-specific T cell response peaks after the first dose and is characterized by high frequencies of CD8s. T cells maintain immediate effector functions and high proliferative potential over time. Thus, GRAd vector is a valuable platform for ge-netic vaccine development, especially when robust CD8 response is needed

    Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

    No full text
    BackgroundTocilizumab blocks pro-inflammatory activity of interleukin-6 (IL-6), involved in pathogenesis of pneumonia the most frequent cause of death in COVID-19 patients.MethodsA multicenter, single-arm, hypothesis-driven trial was planned, according to a phase 2 design, to study the effect of tocilizumab on lethality rates at 14 and 30 days (co-primary endpoints, a priori expected rates being 20 and 35%, respectively). A further prospective cohort of patients, consecutively enrolled after the first cohort was accomplished, was used as a secondary validation dataset. The two cohorts were evaluated jointly in an exploratory multivariable logistic regression model to assess prognostic variables on survival.ResultsIn the primary intention-to-treat (ITT) phase 2 population, 180/301 (59.8%) subjects received tocilizumab, and 67 deaths were observed overall. Lethality rates were equal to 18.4% (97.5% CI: 13.6-24.0, P=0.52) and 22.4% (97.5% CI: 17.2-28.3, P<0.001) at 14 and 30 days, respectively. Lethality rates were lower in the validation dataset, that included 920 patients. No signal of specific drug toxicity was reported. In the exploratory multivariable logistic regression analysis, older age and lower PaO2/FiO2 ratio negatively affected survival, while the concurrent use of steroids was associated with greater survival. A statistically significant interaction was found between tocilizumab and respiratory support, suggesting that tocilizumab might be more effective in patients not requiring mechanical respiratory support at baseline.ConclusionsTocilizumab reduced lethality rate at 30 days compared with null hypothesis, without significant toxicity. Possibly, this effect could be limited to patients not requiring mechanical respiratory support at baseline.Registration EudraCT (2020-001110-38); clinicaltrials.gov (NCT04317092)

    Correction to: Tocilizumab for patients with COVID-19 pneumonia. The single-arm TOCIVID-19 prospective trial

    No full text
    corecore