856 research outputs found
Alternative Hamiltonian Desciptions and Statistical Mechanics
We argue here that, as it happens in Classical and Quantum Mechanics, where
it has been proven that alternative Hamiltonian descriptions can be compatible
with a given set of equations of motion, the same holds true in the realm of
Statistical Mechanics, i.e. that alternative Hamiltonian descriptions do lead
to the same thermodynamical description of any physical system.Comment: 11 page
Relations Between Quantum Maps and Quantum States
The relation between completely positive maps and compound states is
investigated in terms of the notion of quantum conditional probability
Wigner's Problem and Alternative Commutation Relations for Quantum Mechanics
It is shown, that for quantum systems the vectorfield associated with the
equations of motion may admit alternative Hamiltonian descriptions, both in the
Schr\"odinger and Heisenberg pictures. We illustrate these ambiguities in terms
of simple examples.Comment: Latex,14 pages,accepted by Int. Jour.Mod.Phy
Alternative linear structures for classical and quantum systems
The possibility of deforming the (associative or Lie) product to obtain
alternative descriptions for a given classical or quantum system has been
considered in many papers. Here we discuss the possibility of obtaining some
novel alternative descriptions by changing the linear structure instead. In
particular we show how it is possible to construct alternative linear
structures on the tangent bundle TQ of some classical configuration space Q
that can be considered as "adapted" to the given dynamical system. This fact
opens the possibility to use the Weyl scheme to quantize the system in
different non equivalent ways, "evading", so to speak, the von Neumann
uniqueness theorem.Comment: 32 pages, two figures, to be published in IJMP
Zeno dynamics and constraints
We investigate some examples of quantum Zeno dynamics, when a system
undergoes very frequent (projective) measurements that ascertain whether it is
within a given spatial region. In agreement with previously obtained results,
the evolution is found to be unitary and the generator of the Zeno dynamics is
the Hamiltonian with hard-wall (Dirichlet) boundary conditions. By using a new
approach to this problem, this result is found to be valid in an arbitrary
-dimensional compact domain. We then propose some preliminary ideas
concerning the algebra of observables in the projected region and finally look
at the case of a projection onto a lower dimensional space: in such a situation
the Zeno ansatz turns out to be a procedure to impose constraints.Comment: 21 page
Phase-space descriptions of operators and the Wigner distribution in quantum mechanics II. The finite dimensional case
A complete solution to the problem of setting up Wigner distribution for
N-level quantum systems is presented. The scheme makes use of some of the ideas
introduced by Dirac in the course of defining functions of noncommuting
observables and works uniformly for all N. Further, the construction developed
here has the virtue of being essentially input-free in that it merely requires
finding a square root of a certain N^2 x N^2 complex symmetric matrix, a task
which, as is shown, can always be accomplished analytically. As an
illustration, the case of a single qubit is considered in some detail and it is
shown that one recovers the result of Feynman and Wootters for this case
without recourse to any auxiliary constructs.Comment: 14 pages, typos corrected, para and references added in introduction,
submitted to Jour. Phys.
Wigner distributions for finite dimensional quantum systems: An algebraic approach
We discuss questions pertaining to the definition of `momentum', `momentum
space', `phase space', and `Wigner distributions'; for finite dimensional
quantum systems. For such systems, where traditional concepts of `momenta'
established for continuum situations offer little help, we propose a physically
reasonable and mathematically tangible definition and use it for the purpose of
setting up Wigner distributions in a purely algebraic manner. It is found that
the point of view adopted here is limited to odd dimensional systems only. The
mathematical reasons which force this situation are examined in detail.Comment: Latex, 13 page
- …
