620 research outputs found

    Evaluating Variable Length Markov Chain Models for Analysis of User Web Navigation Sessions

    Full text link
    Markov models have been widely used to represent and analyse user web navigation data. In previous work we have proposed a method to dynamically extend the order of a Markov chain model and a complimentary method for assessing the predictive power of such a variable length Markov chain. Herein, we review these two methods and propose a novel method for measuring the ability of a variable length Markov model to summarise user web navigation sessions up to a given length. While the summarisation ability of a model is important to enable the identification of user navigation patterns, the ability to make predictions is important in order to foresee the next link choice of a user after following a given trail so as, for example, to personalise a web site. We present an extensive experimental evaluation providing strong evidence that prediction accuracy increases linearly with summarisation ability

    Kemeny's constant and the random surfer

    Get PDF
    We revisit Kemeny's constant in the context of Web navigation, also known as "surfing." We generalize the constant, derive upper and lower bounds on it, and give it a novel interpretation in terms of the number of links a random surfer will follow to reach his final destination

    Trail records and navigational learning

    Get PDF
    An emerging wave of 'ambient' technologies has the potential to support learning in new and particular ways. In this paper we propose a 'trail model' of 'navigational learning' which links some particular learning needs to the potentialities of these technologies. In this context, we outline the design and use of an 'experience recorder', a technology to support learning in museums. In terms of policy for the e-society, these proposals are relevant to the need for personalised and individualised learning support

    Wearable and mobile devices

    Get PDF
    Information and Communication Technologies, known as ICT, have undergone dramatic changes in the last 25 years. The 1980s was the decade of the Personal Computer (PC), which brought computing into the home and, in an educational setting, into the classroom. The 1990s gave us the World Wide Web (the Web), building on the infrastructure of the Internet, which has revolutionized the availability and delivery of information. In the midst of this information revolution, we are now confronted with a third wave of novel technologies (i.e., mobile and wearable computing), where computing devices already are becoming small enough so that we can carry them around at all times, and, in addition, they have the ability to interact with devices embedded in the environment. The development of wearable technology is perhaps a logical product of the convergence between the miniaturization of microchips (nanotechnology) and an increasing interest in pervasive computing, where mobility is the main objective. The miniaturization of computers is largely due to the decreasing size of semiconductors and switches; molecular manufacturing will allow for “not only molecular-scale switches but also nanoscale motors, pumps, pipes, machinery that could mimic skin” (Page, 2003, p. 2). This shift in the size of computers has obvious implications for the human-computer interaction introducing the next generation of interfaces. Neil Gershenfeld, the director of the Media Lab’s Physics and Media Group, argues, “The world is becoming the interface. Computers as distinguishable devices will disappear as the objects themselves become the means we use to interact with both the physical and the virtual worlds” (Page, 2003, p. 3). Ultimately, this will lead to a move away from desktop user interfaces and toward mobile interfaces and pervasive computing

    Comparing Typical Opening Move Choices Made by Humans and Chess Engines

    Full text link
    The opening book is an important component of a chess engine, and thus computer chess programmers have been developing automated methods to improve the quality of their books. For chess, which has a very rich opening theory, large databases of high-quality games can be used as the basis of an opening book, from which statistics relating to move choices from given positions can be collected. In order to find out whether the opening books used by modern chess engines in machine versus machine competitions are ``comparable'' to those used by chess players in human versus human competitions, we carried out analysis on 26 test positions using statistics from two opening books one compiled from humans' games and the other from machines' games. Our analysis using several nonparametric measures, shows that, overall, there is a strong association between humans' and machines' choices of opening moves when using a book to guide their choices.Comment: 12 pages, 1 figure, 6 table

    Evaluating the development of wearable devices, personal data assistants and the use of other mobile devices in further and higher education institutions

    Get PDF
    This report presents technical evaluation and case studies of the use of wearable and mobile computing mobile devices in further and higher education. The first section provides technical evaluation of the current state of the art in wearable and mobile technologies and reviews several innovative wearable products that have been developed in recent years. The second section examines three scenarios for further and higher education where wearable and mobile devices are currently being used. The three scenarios include: (i) the delivery of lectures over mobile devices, (ii) the augmentation of the physical campus with a virtual and mobile component, and (iii) the use of PDAs and mobile devices in field studies. The first scenario explores the use of web lectures including an evaluation of IBM's Web Lecture Services and 3Com's learning assistant. The second scenario explores models for a campus without walls evaluating the Handsprings to Learning projects at East Carolina University and ActiveCampus at the University of California San Diego . The third scenario explores the use of wearable and mobile devices for field trips examining San Francisco Exploratorium's tool for capturing museum visits and the Cybertracker field computer. The third section of the report explores the uses and purposes for wearable and mobile devices in tertiary education, identifying key trends and issues to be considered when piloting the use of these devices in educational contexts

    Spam

    Get PDF
    With the advent of the electronic mail system in the 1970s, a new opportunity for direct marketing using unsolicited electronic mail became apparent. In 1978, Gary Thuerk compiled a list of those on the Arpanet and then sent out a huge mailing publicising Digital Equipment Corporation (DEC—now Compaq) systems. The reaction from the Defense Communications Agency (DCA), who ran Arpanet, was very negative, and it was this negative reaction that ensured that it was a long time before unsolicited e-mail was used again (Templeton, 2003). As long as the U.S. government controlled a major part of the backbone, most forms of commercial activity were forbidden (Hayes, 2003). However, in 1993, the Internet Network Information Center was privatized, and with no central government controls, spam, as it is now called, came into wider use. The term spam was taken from the Monty Python Flying Circus (a UK comedy group) and their comedy skit that featured the ironic spam song sung in praise of spam (luncheon meat)—“spam, spam, spam, lovely spam”—and it came to mean mail that was unsolicited. Conversely, the term ham came to mean e-mail that was wanted. Brad Templeton, a UseNet pioneer and chair of the Electronic Frontier Foundation, has traced the first usage of the term spam back to MUDs (Multi User Dungeons), or real-time multi-person shared environment, and the MUD community. These groups introduced the term spam to the early chat rooms (Internet Relay Chats). The first major UseNet (the world’s largest online conferencing system) spam sent in January 1994 and was a religious posting: “Global alert for all: Jesus is coming soon.” The term spam was more broadly popularised in April 1994, when two lawyers, Canter and Siegel from Arizona, posted a message that advertized their information and legal services for immigrants applying for the U.S. Green Card scheme. The message was posted to every newsgroup on UseNet, and after this incident, the term spam became synonymous with junk or unsolicited e-mail. Spam spread quickly among the UseNet groups who were easy targets for spammers simply because the e-mail addresses of members were widely available (Templeton, 2003)

    Zipf's Law for web surfers

    Get PDF
    One of the main activities of Web users, known as 'surfing', is to follow links. Lengthy navigation often leads to disorientation when users lose track of the context in which they are navigating and are unsure how to proceed in terms of the goal of their original query. Studying navigation patterns of Web users is thus important, since it can lead us to a better understanding of the problems users face when they are surfing. We derive Zipf's rank frequency law (i.e., an inverse power law) from an absorbing Markov chain model of surfers' behavior assuming that less probable navigation trails are, on average, longer than more probable ones. In our model the probability of a trail is interpreted as the relevance (or 'value') of the trail. We apply our model to two scenarios: in the first the probability of a user terminating the navigation session is independent of the number of links he has followed so far, and in the second the probability of a user terminating the navigation session increases by a constant each time the user follows a link. We analyze these scenarios using two sets of experimental data sets showing that, although the first scenario is only a rough approximation of surfers' behavior, the data is consistent with the second scenario and can thus provide an explanation of surfers' behavior

    A Discrete Evolutionary Model for Chess Players' Ratings

    Full text link
    The Elo system for rating chess players, also used in other games and sports, was adopted by the World Chess Federation over four decades ago. Although not without controversy, it is accepted as generally reliable and provides a method for assessing players' strengths and ranking them in official tournaments. It is generally accepted that the distribution of players' rating data is approximately normal but, to date, no stochastic model of how the distribution might have arisen has been proposed. We propose such an evolutionary stochastic model, which models the arrival of players into the rating pool, the games they play against each other, and how the results of these games affect their ratings. Using a continuous approximation to the discrete model, we derive the distribution for players' ratings at time tt as a normal distribution, where the variance increases in time as a logarithmic function of tt. We validate the model using published rating data from 2007 to 2010, showing that the parameters obtained from the data can be recovered through simulations of the stochastic model. The distribution of players' ratings is only approximately normal and has been shown to have a small negative skew. We show how to modify our evolutionary stochastic model to take this skewness into account, and we validate the modified model using the published official rating data.Comment: 17 pages, 4 figure
    corecore