52 research outputs found

    Anti-leukemia activity of alloreactive NK cells in KIR ligand-mismatched haploidentical HSCT for pediatric patients: evaluation of the functional role of activating KIR and redefinition of inhibitory KIR specificity.

    Get PDF
    none15We analyzed 21 children with leukemia receiving haploidentical hematopoietic stem cell transplantation (haplo-HSCT) from killer immunoglobulin (Ig)-like receptors (KIR) ligand-mismatched donors. We showed that, in most transplantation patients, variable proportions of donor-derived alloreactive natural killer (NK) cells displaying anti-leukemia activity were generated and maintained even late after transplantation. This was assessed through analysis of donor KIR genotype, as well as through phenotypic and functional analyses of NK cells, both at the polyclonal and clonal level. Donor-derived KIR2DL1(+) NK cells isolated from the recipient displayed the expected capability of selectively killing C1/C1 target cells, including patient leukemia blasts. Differently, KIR2DL2/3(+) NK cells displayed poor alloreactivity against leukemia cells carrying human leukocyte antigen (HLA) alleles belonging to C2 group. Unexpectedly, this was due to recognition of C2 by KIR2DL2/3, as revealed by receptor blocking experiments and by binding assays of soluble KIR to HLA-C transfectants. Remarkably, however, C2/C2 leukemia blasts were killed by KIR2DL2/3(+) (or by NKG2A(+)) NK cells that coexpressed KIR2DS1. This could be explained by the ability of KIR2DS1 to directly recognize C2 on leukemia cells. A role of the KIR2DS2 activating receptor in leukemia cell lysis could not be demonstrated. Altogether, these results may have important clinical implications for the selection of optimal donors for haplo-HSCT.openPENDE D; MARCENARO S; FALCO M; MARTINI S; BERNARDO ME; MONTAGNA D; ROMEO E; COGNET C; MARTINETTI M; MACCARIO R; MINGARI MC; VIVIER E; MORETTA L; LOCATELLI F; MORETTA A.Pende, D; Marcenaro, S; Falco, M; Martini, S; Bernardo, Me; Montagna, Daniela; Romeo, E; Cognet, C; Martinetti, M; Maccario, R; Mingari, Mc; Vivier, E; Moretta, L; Locatelli, Franco; Moretta, A

    Effect of Recombinant Cytokines on the Expression of Natural Killer Cell Receptors from Patients with TB or/and HIV Infection

    Get PDF
    BACKGROUND: NK cells express several specialized receptors through which they recognize and discriminate virally-infected/tumor cells efficiently from healthy cells and kill them. This ability to lyse is regulated by an array of inhibitory or activating receptors. The present study investigated the frequency of various NK receptors expressed by NK cell subsets from HIV-infected TB patients. The effect of IL-15+IL-12 stimulation on the expression of NK receptors was also studied. METHODOLOGY/PRINCIPAL FINDINGS: The study included 15 individuals each from normal healthy subjects, pulmonary tuberculosis patients, HIV-infected individuals and patients with HIV and tuberculosis co-infection. The expression of NK cell receptors was analyzed on two NK cell subsets within the peripheral blood: CD16+CD3- and CD56+CD3- using flow cytometry. The expression of inhibitory receptors (CD158a, CD158b, KIRp70, CD85j and NKG2A) on NK subsets was increased in HIV, when compared to NHS. But the response in HIV-TB was not uniform. Stimulation with IL-15+IL-12 dropped (p<0.05) the expression of CD85j and NKG2A in HIV. The basal expression of natural cytotoxicity receptors (NKp30 and NKp46) on NK cell subsets was lowered (p<0.05) in HIV and HIV-TB as compared to NHS. However, the expression of NKp44 and NKG2D was elevated in HIV. Enhanced NKp46 and NKG2D expression was observed in HIV with IL-15+IL-12 stimulation. The coreceptor NKp80 was found to be expressed in higher numbers on NK subsets from HIV compared to NHS, which elevated with IL-15+IL-12 stimulation. The expression of NK receptors and response to stimulation was primarily on CD56+CD3- subset. CONCLUSIONS/SIGNIFICANCE: IL-15+IL-12 has an immunomodulatory effect on NK cell subsets from HIV-infected individuals viz down-regulation of iNKRs, elevation of activatory receptors NKp46 and NKG2D, and induction of coreceptor NKp80. IL-15+IL-12 is not likely to be of value when co-infected with TB probably due to the influence of tuberculosis

    The Immune Inhibitory Receptor LAIR-1 Is Highly Expressed by Plasmacytoid Dendritic Cells and Acts Complementary with NKp44 to Control IFNα Production

    Get PDF
    Plasmacytoid dendritic cells (pDCs) are a subset of dendritic cells endowed with the capacity of producing large amounts of IFNα. Here we show that the Leukocyte-Associated Ig-like Receptor-1 (LAIR-1) is abundantly expressed on pDCs (the highest expression among all leukocytes) and its cross-linking inhibits IFNα production in response to Toll-like receptor ligands. Remarkably, LAIR-1 expression in pDCs is down-regulated in the presence of interleukin (IL)-3, thus indicating coordinated functions with NKp44, another pDC inhibitory receptor, which is conversely induced by IL-3. Nevertheless, the expression of NKp44 in pDCs isolated from secondary lymphoid organs, which is thought to be influenced by IL-3, is not coupled to a decreased expression of LAIR-1. Interestingly, pDCs isolated from peripheral blood of systemic lupus erithematosus (SLE) patients express lower levels of LAIR-1 while displaying slight but consistent expression of NKp44, usually undetectable on pDCs derived from healthy donors. Using sera derived from SLE patients, we show that LAIR-1 and NKp44 display synergistic inhibitory effects on IFNα production by interleukin IL-3 cultured pDCs stimulated with DNA immunocomplexes. In conclusion, our results indicate that the inhibitory function of LAIR-1 may play a relevant role in the mechanisms controlling IFNα production by pDCs both in normal and pathological innate immune responses

    Generation of a Novel Regulatory NK Cell Subset from Peripheral Blood CD34+ Progenitors Promoted by Membrane-Bound IL-15

    Get PDF
    BACKGROUND: NK cells have been long time considered as cytotoxic lymphocytes competent in killing virus-infected cells and tumors. However, NK cells may also play essential immuno-regulatory functions. In this context, the real existence of a defined NK subset with negative regulatory properties has been hypothesized but never clearly demonstrated. METHODOLOGY/PRINCIPAL FINDINGS: Herein, we show the in vitro generation from human peripheral blood haematopoietic progenitors (PB-HP), of a novel subset of non-cytolytic NK cells displaying a mature phenotype and remarkable immuno-regulatory functions (NK-ireg). The main functional hallmark of these NK-ireg cells is represented by the surface expression/release of HLA-G, a major immunosuppressive molecule. In addition, NK-ireg cells secrete two powerful immuno-regulatory factors: IL-10 and IL-21. Through these factors, NK-ireg cells act as effectors of the down-regulation of the immune response: reconverting mature myeloid DC (mDC) into immature/tolerogenic DC, blocking cytolytic functions on conventional NK cells and inducing HLA-G membrane expression on PB-derived monocytes. The generation of "NK-ireg" cells is obtained, by default, in culture conditions favouring cell-to-cell contacts, and it is strictly dependent on reciprocal trans-presentation of membrane-bound IL-15 forms constitutively and selectively expressed by human CD34(+) PB-HP. Finally, a small subset of NKp46(+) HLA-G(+) IL-10(+) is detected within freshly isolated decidual NK cells, suggesting that these cells could represent an in vivo counterpart of the NK-ireg cells. CONCLUSIONS/SIGNIFICANCE: In conclusion, NK-ireg cells represent a novel truly differentiated non-cytolytic NK subset with a self-sustainable phenotype (CD56(+) CD16(+) NKp30(+) NKp44(+) NKp46(+) CD94(+) CD69(+) CCR7(+)) generated from specific pSTAT6(+) GATA3(+) precursors. NK-ireg cells could be employed to develop new immuno-suppressive strategies in autoimmune diseases, transplant rejection or graft versus host diseases. In addition, NK-ireg cells can be easily derived from peripheral blood of the patients and could constitute an autologous biotherapic tool to be used combined or in alternative to other immuno-regulatory cells

    KIR Polymorphisms Modulate Peptide-Dependent Binding to an MHC Class I Ligand with a Bw6 Motif

    Get PDF
    Molecular interactions between killer immunoglobulin-like receptors (KIRs) and their MHC class I ligands play a central role in the regulation of natural killer (NK) cell responses to viral pathogens and tumors. Here we identify Mamu-A1*00201 (Mamu-A*02), a common MHC class I molecule in the rhesus macaque with a canonical Bw6 motif, as a ligand for Mamu-KIR3DL05. Mamu-A1*00201 tetramers folded with certain SIV peptides, but not others, directly stained primary NK cells and Jurkat cells expressing multiple allotypes of Mamu-KIR3DL05. Differences in binding avidity were associated with polymorphisms in the D0 and D1 domains of Mamu-KIR3DL05, whereas differences in peptide-selectivity mapped to the D1 domain. The reciprocal exchange of the third predicted MHC class I-contact loop of the D1 domain switched the specificity of two Mamu-KIR3DL05 allotypes for different Mamu-A1*00201-peptide complexes. Consistent with the function of an inhibitory KIR, incubation of lymphocytes from Mamu-KIR3DL05+ macaques with target cells expressing Mamu-A1*00201 suppressed the degranulation of tetramer-positive NK cells. These observations reveal a previously unappreciated role for D1 polymorphisms in determining the selectivity of KIRs for MHC class I-bound peptides, and identify the first functional KIR-MHC class I interaction in the rhesus macaque. The modulation of KIR-MHC class I interactions by viral peptides has important implications to pathogenesis, since it suggests that the immunodeficiency viruses, and potentially other types of viruses and tumors, may acquire changes in epitopes that increase the affinity of certain MHC class I ligands for inhibitory KIRs to prevent the activation of specific NK cell subsets

    NK cells from malignant pleural effusions are potent antitumor effectors: A clue for adoptive immunotherapy?

    Get PDF
    none4Vacca P;Martini S;Mingari MC;Moretta LVacca, Paola; Martini, Stefania; Mingari, MARIA CRISTINA; Moretta, Lorenz
    • …
    corecore