4,985 research outputs found

    Alfven wave scattering and the secondary to primary ratio

    Get PDF
    The cosmic ray abundances have traditionally been used to determine the elemental and isotopic nature of galactic ray sources and average measures of propagation conditions. Detailed studies of the physics of propagation are usually paired with relatively straightforward estimates of the secondary-to-primary (S/P) ratios. In the work reported here, calculations of elemental abundances are paired with a more careful treatment of the propagation process. It is shown that the physics of propagation does indeed leave specific traces of Galactic structure in cosmic ray abundances

    Transfer of ultra-low phase noise microwave references over the JANET Aurora fibre network using a femtosecond optical frequency comb

    No full text
    An ultra-low phase noise microwave frequency is transferred over 82 km of installed fibre by propagation of a 30 nm bandwidth optical frequency comb (104 modes). The phase noise induced along the fibre by vibrations and thermal effects is suppressed by implementing a noise cancellation scheme where a portion of the light is sent back to the transmitter through the same fibre. The 6th harmonic of the repetition rate detected before and after the pulse train has travelled a round trip are phase compared and used to generate an error signal that controls a fibre stretcher to compensate for the fibre-induced phase fluctuations. Optical amplifiers are used to compensate for the fibre attenuation and dispersion compensation modules are also employed

    Taking Arduino to the Internet of things: the ASIP programming model

    Get PDF
    Micro-controllers such as Arduino are widely used by all kinds of makers worldwide. Popularity has been driven by Arduino’s simplicity of use and the large number of sensors and libraries available to extend the basic capabilities of these controllers. The last decade has witnessed a surge of software engineering solutions for “the Internet of Things”, but in several cases these solutions require computational resources that are more advanced than simple, resource-limited micro-controllers. Surprisingly, in spite of being the basic ingredients of complex hardware–software systems, there does not seem to be a simple and flexible way to (1) extend the basic capabilities of micro-controllers, and (2) to coordinate inter-connected micro-controllers in “the Internet of Things”. Indeed, new capabilities are added on a per-application basis and interactions are mainly limited to bespoke, point-to-point protocols that target the hardware I/O rather than the services provided by this hardware. In this paper we present the Arduino Service Interface Programming (ASIP) model, a new model that addresses the issues above by (1) providing a “Service” abstraction to easily add new capabilities to micro-controllers, and (2) providing support for networked boards using a range of strategies, including socket connections, bridging devices, MQTT-based publish–subscribe messaging, discovery services, etc. We provide an open-source implementation of the code running on Arduino boards and client libraries in Java, Python, Racket and Erlang. We show how ASIP enables the rapid development of non-trivial applications (coordination of input/output on distributed boards and implementation of a line-following algorithm for a remote robot) and we assess the performance of ASIP in several ways, both quantitative and qualitative

    Framing Expectations in Early HIV Cure Research

    Get PDF
    Language used to describe clinical research represents a powerful opportunity to educate volunteers. In the case of HIV cure research there is an emerging need to manage expectations by using the term ‘experiment’. Cure experiments are proof-of-concept studies designed to evaluate novel paradigms to reduce persistent HIV-1 reservoirs, without any expectation of medical benefit

    Cost analysis of a transition to green vehicle technology for light duty fleet vehicles in Public Works Department–Naval Support Activity Monterey (PWD Monterey)

    Get PDF
    MBA Professional ReportThe MBA Project is a detailed cost analysis of various mature green vehicle technologies that can be implemented by Public Works Department–Naval Support Activity Monterey (PWD Monterey) and its subordinate entities, with the intent of reducing both overall life-cycle vehicle costs and carbon emissions. The focus is on light-duty, non-tactical vehicles in use in the region. The cost analysis explores Plug-In Hybrid Electric Vehicles (PHEV), the infrastructure required to operate them, and the social cost of carbon emissions (SCC). Our model indicates that it is not economically beneficial to implement green vehicle technologies on a fleet-wide level for PWD Monterey. Although there are SCC benefits, and right-sizing fleet vehicles to suitable alternatives leads to savings, the increased cost of PHEVs and relatively large required infrastructure cost outpace the total benefits.http://archive.org/details/costnalysisoftra1094547924Lieutenant Commander, United States NavyLieutenant, United States NavyApproved for public release; distribution is unlimited

    Towards cyber-physical systems as services: the ASIP protocol

    Get PDF
    The development of Cyber-Physical Systems needs to address the heterogeneity of several components that interact to build a single application. In this paper we present a model to enable easy integration and interaction of micro-controllers. Specifically, we describe the Arduino Service Interface Protocol (ASIP), we provide an implementation and client libraries for Java, Racket and Erlang, together with the description of a practical example

    Smartphone-based, rapid, wide-field fundus photography for diagnosis of pediatric retinal diseases

    Get PDF
    PurposeAn important, unmet clinical need is for cost-effective, reliable, easy-to-use, and portable retinal photography to evaluate preventable causes of vision loss in children. This study presents the feasibility of a novel smartphone-based retinal imaging device tailored to imaging the pediatric fundus.MethodsSeveral modifications for children were made to our previous device, including a child-friendly 3D printed housing of animals, attention-grabbing targets, enhanced image stitching, and video-recording capabilities. Retinal photographs were obtained in children undergoing routine dilated eye examination. Experienced masked retina-specialist graders determined photograph quality and made diagnoses based on the images, which were compared to the treating clinician's diagnosis.ResultsDilated fundus photographs were acquired in 43 patients with a mean age of 6.7 years. The diagnoses included retinoblastoma, Coats' disease, commotio retinae, and optic nerve hypoplasia, among others. Mean time to acquire five standard photographs totaling 90-degree field of vision was 2.3 ± 1.1 minutes. Patients rated their experience of image acquisition favorably, with a Likert score of 4.6 ± 0.8 out of 5. There was 96% agreement between image-based diagnosis and the treating clinician's diagnosis.ConclusionsWe report a handheld smartphone-based device with modifications tailored for wide-field fundus photography in pediatric patients that can rapidly acquire fundus photos while being well-tolerated.Translational relevanceAdvances in handheld smartphone-based fundus photography devices decrease the technical barrier for image acquisition in children and may potentially increase access to ophthalmic care in communities with limited resources

    MODIS Tree Cover Validation for the Circumpolar Taiga-Tundra Transition Zone

    Get PDF
    A validation of the 2005 500m MODIS vegetation continuous fields (VCF) tree cover product in the circumpolar taiga-tundra ecotone was performed using high resolution Quickbird imagery. Assessing the VCF's performance near the northern limits of the boreal forest can help quantify the accuracy of the product within this vegetation transition area. The circumpolar region was divided into longitudinal zones and validation sites were selected in areas of varying tree cover where Quickbird imagery is available in Google Earth. Each site was linked to the corresponding VCF pixel and overlaid with a regular dot grid within the VCF pixel's boundary to estimate percent tree crown cover in the area. Percent tree crown cover was estimated using Quickbird imagery for 396 sites throughout the circumpolar region and related to the VCF's estimates of canopy cover for 2000-2005. Regression results of VCF inter-annual comparisons (2000-2005) and VCF-Quickbird image-interpreted estimates indicate that: (1) Pixel-level, inter-annual comparisons of VCF estimates of percent canopy cover were linearly related (mean R(sup 2) = 0.77) and exhibited an average root mean square error (RMSE) of 10.1 % and an average root mean square difference (RMSD) of 7.3%. (2) A comparison of image-interpreted percent tree crown cover estimates based on dot counts on Quickbird color images by two different interpreters were more variable (R(sup 2) = 0.73, RMSE = 14.8%, RMSD = 18.7%) than VCF inter-annual comparisons. (3) Across the circumpolar boreal region, 2005 VCF-Quickbird comparisons were linearly related, with an R(sup 2) = 0.57, a RMSE = 13.4% and a RMSD = 21.3%, with a tendency to over-estimate areas of low percent tree cover and anomalous VCF results in Scandinavia. The relationship of the VCF estimates and ground reference indicate to potential users that the VCF's tree cover values for individual pixels, particularly those below 20% tree cover, may not be precise enough to monitor 500m pixel-level tree cover in the taiga-tundra transition zone
    • 

    corecore