76 research outputs found

    Functional indicators of response mechanisms to nitrogen deposition, ozone, and their interaction in two Mediterranean tree species

    Get PDF
    The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3. For both factors we selected realistic exposures (20 kg N ha-1 yr-1 and 80 ppb h for nitrogen and O3, respectively), in order to elucidate the mechanisms implemented by the plants. Nitrogen addition resulted in higher nitrogen concentration at the leaf level in F. ornus, whereas a slight increase was detected in Q. ilex. Nitrogen enhanced the maximum rate of assimilation and ribulose 1,5-bisphosphate regeneration in both species, whereas it influenced the light harvesting complex only in the deciduous F. ornus that was also affected by O3 (reduced assimilation rate and accelerated senescence-related processes). Conversely, Q. ilex developed an avoidance mechanism to cope with O3, confirming a substantial O3 tolerance of this species. Nitrogen seemed to ameliorate the harmful effects of O3 in F. ornus: the hypothesized mechanism of action involved the production of nitrogen oxide as the first antioxidant barrier, followed by enzymatic antioxidant response. In Q. ilex, the interaction was not detected on gas exchange and photosystem functionality; however, in this species, nitrogen might stimulate an alternative antioxidant response such as the emission of volatile organic compounds. Antioxidant enzyme activity was lower in plants treated with both O3 and nitrogen even though reactive oxygen species production did not differ between the treatments

    Effects of triacontanol on ascorbate-glutathione cycle in Brassica napus L. exposed to cadmium-induced oxidative stress.

    Get PDF
    The ability of exogenous triacontanol (TRIA), a plant growth regulator, to reduce Cd toxicity was studied in canola (Brassica napus L.) plants. The following biological parameters were examined in canola seedlings to investigate TRIA-induced tolerance to Cd toxicity: seedling growth, chlorophyll damage and antioxidant response. In particular, TRIA application reduced Cd-induced oxidative damage, as shown by reduction of ROS content, lipoxygenase (LOX) activity and lipid peroxidation level. TRIA pretreatment increased non-enzymatic antioxidant contents (ascorbate, AsA, glutathione and GSH), phytochelatin content (PCs) and activities of antioxidant enzymes such as superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GPX), monodehydroascorbate reductase (MDHAR), dehydro ascorbate reductase (DHAR), and glutathione reductase (GR), so reducing the oxidative stress. These results clearly indicate the protective ability of TRIA to modulate the redox status through the antioxidant pathway AGC and GSH, so reducing Cd-induced oxidative stress

    Chemical Composition and Biological Activities of Prangos ferulacea Essential Oils

    Get PDF
    Prangos ferulacea (L.) Lindl, which belongs to the Apiaceae family, is a species that mainly grows in the eastern Mediterranean region and in western Asia. It has been largely used in traditional medicine in several countries and it has been shown to possess several interesting biological properties. With the aim to provide new insights into the phytochemistry and pharmacology of this species, the essential oils of flowers and leaves from a local accession that grows in Sicily (Italy) and has not yet been previously studied were investigated. The chemical composition of both oils, obtained by hydrodistillation from the leaves and flowers, was evaluated by GC-MS. This analysis allowed us to identify a new chemotype, characterized by a large amount of (Z)-beta-ocimene. Furthermore, these essential oils have been tested for their possible antimicrobial and antioxidant activity. P. ferulacea essential oils exhibit moderate antimicrobial activity; in particular, the flower essential oil is harmful at low and wide spectrum concentrations. They also exhibit good antioxidant activity in vitro and in particular, it has been shown that the essential oils of the flowers and leaves of P. ferulacea caused a decrease in ROS and an increase in the activity of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) in OZ-stimulated PMNs. Therefore, these essential oils could be considered as promising candidates for pharmaceutical and nutraceutical preparations

    Interaction of triacontanol and arsenic on the ascorbate-glutathione cycle and their effects on the ultrastructure in Coriandrum sativum L.

    Get PDF
    Exogenous application of triacontanol (TRIA) has the ability to mitigate the adverse effects of abiotic stresses by modulating a number of physio-biochemical processes in different plants. However, information about how its effects may be mediated under heavy metal stress is scanty. In this study, we evaluated how TRIA exerted its role against the toxicity of sodium arsenate in coriander (Coriandrum sativum L.). The activities of enzymes, including ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), dehydroascorbate reductase (DHAR) and glutathione-S-transferase (GST), were measured. In addition, the contents of ascorbate (ASC), dehydroascorbate (DHA), reduced glutathione (GSH) and some elements including both As and the nutrients Ca, Mg, Zn, K, P were determined. Results suggested that As decreased GSH, ASA and DHA contents, a clear indication of oxidative stress, but their amounts were raised by TRIA treatment. Also, As stress decreased plant Ca, Zn, K, Mg and P contents, while TRIA improved their uptake and inhibited As accumulation. As 200 μM treatment inhibited the activities of APX, MDHAR, DHAR, and GR, enzymes of the ascorbate-glutathione cycle (AGC). TRIA supplementation restored and even enhanced the activity of all the AGC enzymes. 10 μM TRIA treatment increased GST gene expression and activity to a greater extent than under only As treatment. TRIA-alone treatments did not change the mentioned parameters. Transmission electron microscopy (TEM) observations showed that TRIA was able to protect cells, and most of all chloroplasts, from As-induced damage. These results clearly indicate the protective role of TRIA in modulating the redox status of the plant system through the antioxidant AGC and GSH enzymes, which could counteract arsenic-induced oxidative stress

    Effect of Feijoa Sellowiana Acetonic Extract on Proliferation Inhibition and Apoptosis Induction in Human Gastric Cancer Cells

    Get PDF
    Gastric cancer (GC) still represents a relevant health problem in the world for both incidence and mortality rates. Many studies underlined that natural products consumption could reduce GC risk, indicating flavonoids as responsible for the beneficial eects through the modulation of several biological processes, such as the inhibition of cancer antioxidant defense and induction of apoptosis. Since Feijoa sellowiana fruit is known to contain high amounts of flavonoids, among which is flavone, we evaluated the antiproliferative and proapoptotic eects of F. sellowiana acetonic extract on GC cell lines through MTS and Annexin-V FITC assays. Among three GC cell lines tested, SNU-1 results being sensitive to both the F. sellowiana acetonic extract and synthetic flavone, which was used as the reference treatment. Moreover, we evaluated their antioxidant eects, assessing the activity of the antioxidant enzymes supeoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) in polymorphonuclear cells. We found a significant increase of their activity after exposure to both F. sellowiana acetonic extract and flavone, supporting the idea that a diet that includes flavone-rich fruits could be of benefit for health. In addition to this antioxidant eect on normal cells, this study indicates, for the first time, an anticancer eect of F. sellowiana acetonic extract in GC cells

    Chemical Composition and Biological Activities of Oregano and Lavender Essential Oils

    Get PDF
    Folk medicine uses wild herbs, especially from the Lamiaceae family, such as oregano and lavender, in the treatment of many diseases. In the present study, we investigated the antibacterial activity of the essential oils of Origanum glandulosum Desf. and Lavandula dentata L. against multidrug- resistant Klebsiella pneumoniae strains. The chemical composition of essential oils and their effect on the ultrastructure of the tested bacteria and on the release of cellular components that absorb at 260 nm were studied. Furthermore, the cytotoxicity and the production of reactive oxygen species in human lymphocytes treated with essential oils were evaluated. Thymol (33.2%) was the major constituent in O. glandulosum, and β-pinene (17.3%) was the major constituent in L. dentata. We observed ultrastructural damage in bacteria and increased release of cellular material. Furthermore, ROS production in human lymphocytes treated with essential oils was lower than in untreated lymphocytes and no cytotoxicity was observed. Therefore, the essential oils of lavender and oregano could be used as a source of natural antibacterial and antioxidant agents with potential pharmacological applications

    The chemical composition of the aerial parts of Stachys spreitzenhoferi (Lamiaceae) growing in Kythira Island (Greece), and their antioxidant, antimicrobial, and antiproliferative properties

    Get PDF
    The Stachys L. genus has been used in traditional medicine to treat skin inflammations, stomach disorders, and stress. The aim of this study was to investigate the chemical profile and biological activity of the methanolic extract of Stachys spreitzenhoferi Heldr. (Lamiaceae) aerial parts, collected on the island of Kythira, South Greece. The analysis by liquid chromatography coupled with electrospray ionization and high-resolution mass spectrometry [LC-(-)ESI/HRMSn] of the methanol extract revealed the occurrence of thirty-six compounds - flavonoids, phenylethanoid glycosides, iridoids, quinic acid derivatives, aliphatic alcohol glycosides, and oligosaccharides - highlighting the substantial presence, as main peaks, of the iridoid melittoside (2) along with flavonoid compounds such as 4'-O-methylisoscutellarein mono-acetyl-diglycoside/chrysoeriol mono-acetyl-diglycoside (24), trimethoxy- (35) and tetramethoxyflavones (36). This extract was tested for its antimicrobial properties against Gram-positive and negative pathogenic strains. The extract was not active against Gram-negative bacteria tested, but it possessed a good dose-dependent antimicrobial activity towards S. aureus (MIC: 1.0 mg/mL) and L. monocytogenes (MIC: 1.0 mg/mL) Gram-(+) strains. Furthermore, this extract has been tested for its possible antioxidant activity in vitro. In particular, it has been shown that these molecules cause a decrease in DPPH, ABTS, and H2O2 radicals. The extract of S. spreitzenhoferi exhibited anti-DPPH activity (IC50: 0.17 mg/mL), anti-H2O2 activity (IC50: 0.125 mg/mL), and promising antiradical effect with an IC50 value of 0.18 mg/mL for anti-ABTS activity. S. spreitzenhoferi extract caused a decrease in ROS (at the concentration of 200 Î¼g/mL) and an increase in the activity of the antioxidant enzymes SOD, CAT, and GPX in OZ-stimulated PMNs. Furthermore, it exhibited antiproliferative activity against acute myeloid leukemia (U937 cell), causing 50% of cell death at the 0.75 mg/mL

    Salicylic acid and melatonin alleviate the effects of heat stress on essential oil composition and antioxidant enzyme activity in Mentha × piperita and Mentha arvensis L

    Get PDF
    The aim of this study was to evaluate changes in the chemical profile of essential oils and antioxidant enzymes activity (catalase CAT, superoxide dismutase SOD, Glutathione S-transferases GST, and Peroxidase POX) in Mentha × piperita L. (Mitcham variety) and Mentha arvensis L. (var. piperascens), in response to heat stress. In addition, we used salicylic acid (SA) and melatonin (M), two brassinosteroids that play an important role in regulating physiological processes, to assess their potential to mitigate heat stress. In both species, the heat stress caused a variation in the composition of the essential oils and in the antioxidant enzymatic activity. Furthermore both Salicylic acid (SA) and melatonin (M) alleviated the effect of heat stress

    Biomarkers of environmental stress in different plants (Marcatori molecolari di inquinamento ambientale in diverse piante)

    Get PDF
    To evaluate the responses to heavy metal stress, the effects of As and Cd toxicity in Coriandrum sativum and Brassica napus L. and the possible treatments to mitigate these effects were studied. Therefore, it has been used a Triacontanol (TRIA) growth regulator, is reported to stimulate plant growth at a very low concentration when exogenously applied to various plant species. The effects of heavy metals on two bryophytes Leptodictyum riparium (exposed in vitro and in field) and Lunularia cruciata (gathered in field) were studied thereafter. Because of their ancientness and their peculiar phylogenetic position bryophytes are fundamental for the elucidation of important aspects of the plant evolutionary history, including traits of metal detoxification and homeostasis. We have been studied the changes in the chemical profile of essential oils and antioxidant enzymes activity in Mentha x piperita L. (Mitcham variety) and Mentha arvensis L. (var. piperascens), in response to heat stress. In addition, it has been used salicylic acid (SA) and melatonin (M), two brassinosteroids that play an important role in regulating physiological processes, to assess their potential to mitigate heat stress. The effects of nitrogen (N) deposition, tropospheric ozone (O3) and their interaction were investigated in two Mediterranean tree species, Fraxinus ornus L. (deciduous) and Quercus ilex L. (evergreen), having different leaf habits and resource use strategies. An experiment was conducted under controlled condition to analyse how nitrogen deposition affects the ecophysiological and biochemical traits, and to explore how the nitrogen-induced changes influence the response to O3

    Antioxidant and Antibacterial Properties of Extracts and Bioactive Compounds in Bryophytes

    No full text
    Today global health problems such as increased risks of oxidative stress-related diseases and antibiotic resistance are issues of serious concern. Oxidative stress is considered to be the underlying cause of many contemporary pathological conditions such as neurological disorders, ischemia, cancer, etc. Antibiotic-resistant bacteria are a concerning issue in clinical practice, causing an increase in deadly infections. Bryophytes synthesize an outstanding number of secondary metabolites that have shown several potential therapeutic and nutraceutical applications. Research in the field has led to the isolation and characterization of several compounds (flavonoids, terpenoids, and bibenzyls). Some of these compounds have shown promising in vitro antibacterial activities and antioxidant potential comparable to known natural antioxidants such as ascorbic acid and α-tocopherol. However, the process of developing new drugs from naturally occurring molecules is often an impervious path. In this paper, the current state of research of bryophytic antioxidant and antibacterial applications is discussed
    • …
    corecore