31 research outputs found

    Combined use of mitochondrial and nuclear genetic markers further reveal immature marine turtle hybrids along the South Western Atlantic

    Get PDF
    Marine turtle hybridization is usually sporadic and involves reports of only a few individuals; however, Brazilian populations have high hybridization rates. Here we investigated the presence of hybrids in morphologically identified immature hawksbills (Eretmochelys imbricate) along the South Western Atlantic (SWA). We sequenced one mitochondrial (D-Loop) and three nuclear DNA (RAG1, RAG2, and CMOS) markers to better understand the patterns and characteristics of hybrids. We identified 22 hybrids (n = 270), 11 of them at the extreme South of the SWA. Uruguay had the highest hybrid frequency in the SWA (similar to 37.5%) followed by southern Brazil with 30%. These are common areas for loggerheads (Caretta caretta) but uncommon for hawksbills, and these hybrids may be adopting the behavior of loggerheads. By analyzing nuclear markers, we can infer that 50% of the sampled hybrids are first generation (F1) and 36% are the result of backcrosses between hybrids and pure E. imbricate (> F1). We also report for the first time immature E. imbricate x Lepidochelys olivacea hybrids at the Brazilian coast. Considering the high frequency of hybrids in the SWA, continuous monitoring should be performed to assess the fitness, genetic integrity, and extent of changes in the gene pools of involved populations

    Distribution and growth rates of immature hawksbill turtles Eretmochelys imbricata in Fernando de Noronha, Brazil

    Get PDF
    This is the final version. Available on open access from Inter-Research via the DOI in this recordKnowledge of life history parameters is essential for the effective management of species of conservation concern. For migratory marine vertebrates such as hawksbill sea turtles Eretmochelys imbricata, feeding aggregations are important developmental habitats, allowing the study of population dynamics. Here, we used data from a 31 yr mark-recapture study of juvenile hawksbill sea turtles in the Fernando de Noronha Archipelago, Brazil, to estimate key demographic parameters. Turtles recruit to the neritic habitat at similar sizes to those of other Atlantic hawksbill aggregations. The curved carapace length (CCL) at the first capture ranged from 28 to 84 cm (mean ± SD: 44.6 ± 9.8 cm). Median minimum residence time of turtles captured at least twice was 3.2 yr, whilst long-term minimum residence of up to 14 yr was also observed, with turtles showing site fidelity within the archipelago. The mean size of turtles captured was constant throughout time. Turtles grew on average 3.4 ± 2.2 cm yr-1, with a monotonic expected growth rate function generally decreasing with increasing size. At these rates, hawksbill turtles in Fernando de Noronha would need to spend ca. 14-18 yr to reach minimum adult breeding size (~74 cm CCL). This mark-recapture study has been essential to understanding the ecology and demographic parameters of this regional hawksbill turtle neritic foraging ground.National Council for Scientific and Technological Development (CNPq), Brazi

    Reproductive output, foraging destinations, and isotopic niche of olive ridley and loggerhead sea turtles, and their hybrids, in Brazil

    Get PDF
    Hybridization is a fundamental evolutionary and ecological process with significant conservation ramifications. Sea turtle hybridization occurs at unusually high frequencies along the northeastern coast of Brazil. To better understand the process, we studied the reproductive output, migration patterns (through satellite telemetry), and isotopic niches of loggerhead turtles Caretta caretta and olive ridley turtles Lepidochelys olivacea and their hybrids. We classified 154 nesting females as loggerhead (n = 91), olive ridley (n = 38), or hybrid (n = 25) based on mitochondrial and nuclear DNA. Further, we compared nesting female morphological data and reproductive parameters (clutch size, emergence success, hatchling production, incubation period) of 405 nests among hybrids and parental species. We found no significant differences among the 3 groups when hatchling production was corrected for female body size, indicating that hybrids and parental species produce similar numbers of hatchlings per clutch. Satellite tracking of 8 post-nesting hybrid females revealed shared foraging grounds with both parental species, as well as neritic migrations between foraging and nesting areas similar to those previously reported for loggerheads and olive ridleys. Analyses of 13C and 15N isotope values (n = 69) further confirmed this pattern, as hybrid isotopic niches overlapped extensively with both parental species. Thus, given the similarities presented between hybrids and their parental species in reproductive, ecological, and behavioral characteristics, we conclude that these hybrids may persist along with other sea turtle nesting populations in the area, with research and conservation implications. © The authors 2021. Open Access under Creative Commons by Attribution Licence. Use, distribution and reproduction are unrestricted. Authors and original publication must be credited

    DNA barcoding of Brazilian sea turtles (Testudines)

    Get PDF
    Five out of the seven recognized species of sea turtles (Testudines) occur on the Brazilian coast. The Barcode Initiative is an effort to undertake a molecular inventory of Earth biodiversity. Cytochrome Oxidase c subunit I (COI) molecular tags for sea turtle species have not yet been described. In this study, COI sequences for the five species of sea turtles that occur in Brazil were generated. These presented widely divergent haplotypes. All observed values were on the same range as those already described for other animal groups: the overall mean distance was 8.2%, the mean distance between families (Dermochelyidae and Cheloniidae) 11.7%, the mean intraspecific divergence 0.34%, and the mean distance within Cheloniidae 6.4%, this being 19-fold higher than the mean divergence observed within species. We obtained species-specific COI barcode tags that can be used for identifying each of the marine turtle species studied

    Green turtles (Chelonia mydas) foraging at Arvoredo Island in Southern Brazil: Genetic characterization and mixed stock analysis through mtDNA control region haplotypes

    Get PDF
    We analyzed mtDNA control region sequences of green turtles (Chelonia mydas) from Arvoredo Island, a foraging ground in southern Brazil, and identified eight haplotypes. Of these, CM-A8 (64%) and CM-A5 (22%) were dominant, the remainder presenting low frequencies (< 5%). Haplotype (h) and nucleotide (π) diversities were 0.5570 ± 0.0697 and 0.0021 ± 0.0016, respectively. Exact tests of differentiation and AMOVA ΦST pairwise values between the study area and eight other Atlantic foraging grounds revealed significant differences in most areas, except Ubatuba and Rocas/Noronha, in Brazil (p > 0.05). Mixed Stock Analysis, incorporating eleven Atlantic and one Mediterranean rookery as possible sources of individuals, indicated Ascension and Aves islands as the main contributing stocks to the Arvoredo aggregation (68.01% and 22.96%, respectively). These results demonstrate the extensive relationships between Arvoredo Island and other Atlantic foraging and breeding areas. Such an understanding provides a framework for establishing adequate management and conservation strategies for this endangered species

    Optimism for mitigation of climate warming impacts for sea turtles through nest shading and relocation

    Get PDF
    Increasing incubation temperatures may threaten the viability of sea turtle populations. We explored opportunities for decreasing incubation temperatures at a Caribbean rookery with extreme female-biased hatchling production. To investigate the effect of artificial shading, temperatures were measured under simple materials (white sheet, white sand, palm leaves). To test natural drivers of incubation temperature, temperatures were measured at average nest depths with shading on two beaches. Results from a pilot experiment suggest the most effective material was palm leaves. Shading decreased temperatures by a mean of 0.60 °C (SE = 0.10 °C, N = 20). Variation between beaches averaged 1.88 °C (SE = 0.13 °C, N = 20). We used long-term rookery data combined with experimental data to estimate the effect on sex ratio: relocation and shading could shift ratios from current ranges (97-100% female) to 60-90% female. A conservation mitigation matrix summarises our evidence that artificial shading and nest relocation are effective conservation strategies to mitigate impacts of climate warming for sea turtles
    corecore