977 research outputs found

    New quadrature-based moment method for the mixing of inert polydisperse fluidized powders in commercial CFD codes

    Get PDF
    To describe the behavior of polydisperse multiphase systems in an Eulerian framework, we solved the population balance equation (PBE), letting it account only for particle size dependencies. To integrate the PBE within a commercial computational fluid dynamics code, we formulated and implemented a novel version of the quadrature method of moments (QMOM). This no longer assumes that the particles move with the same velocity, allowing the latter to be size-dependent. To verify and test the model, we simulated the mixing of inert polydisperse fluidized suspensions initially segregated, validating the results experimentally. Because the accuracy of QMOM increases with the number of moments tracked, we ran three classes of simulations, preserving the first four, six, and eight integer moments of the particle density function. We found that in some cases the numerics corrupts the higher-order moments and a corrective algorithm, designed to restore the validity of the moment set, has to be implemented

    MARTINI coarse-grained model for poly-ε-caprolactone in acetone-water mixtures

    Get PDF
    In this work we present the development of a MARTINI-type coarse-graining (CG) model for poly-ε-caprolactone (PCL) dissolved in a solvent binary mixture of acetone and water. A thermodynamic/conformational procedure is adopted to build up the CG model of the system, starting from the standard MARTINI force field. The single CG bead is parametrized upon solvation free energy calculations, whereas the conformation of the whole polymer chain is optimized using the radius of gyration values calculated at different chain lengths. The model is then able to reproduce the correct thermodynamics of the system, as well as the conformation of single PCL chains, especially in pure water and acetone. The results obtained here are then used to simulate the interactions between multiple longer PCL chains in solution. The model developed here can be used in the future to achieve deeper insight into the dynamics of the polymer self-assembly

    MiR-205-5p inhibition by locked nucleic acids impairs metastatic potential of breast cancer cells

    Get PDF
    Mir-205 plays an important role in epithelial biogenesis and in mammary gland development but its role in cancer still remains controversial depending on the specific cellular context and target genes. We have previously reported that miR-205-5p is upregulated in breast cancer stem cells targeting ERBB pathway and leading to targeted therapy resistance. Here we show that miR-205-5p regulates tumorigenic properties of breast cancer cells, as well as epithelial to mesenchymal transition. Silencing this miRNA in breast cancer results in reduced tumor growth and metastatic spreading in mouse models. Moreover, we show that miR-205-5p knock-down can be obtained with the use of specific locked nucleic acids oligonucleotides in vivo suggesting a future potential use of this approach in therapy

    THE MSP RECEPTOR REGULATES ALPHA6BETA4 AND ALPHA3BETA1 INTEGRINS VIA 14-3-3 PROTEINS IN KERATINOCYTE RE-EPITHELIZATION

    Get PDF

    The Link Among Neurological Diseases: Extracellular Vesicles as a Possible Brain Injury Footprint

    Get PDF
    Extracellular vesicles (EVs), referred as membranous vesicles released into body fluids from all cell types, represent a novel model to explain some aspects of the inter-cellular cross talk. It has been demonstrated that the EVs modify the phenotype of target cells, acting through a large spectrum of mechanisms. In the central nervous system, the EVs are responsible of the wide range of physiological processes required for normal brain function and neuronal support, such as immune signaling, cellular proliferation, differentiation, and senescence. Growing evidences link the EV functions to the pathogenic machinery of the neurological diseases, contributing to the disease progression and spreading. Extracellular vesicles are involved in the brain injury by multimodal ways; they propagate inflammation across the blood brain barrier (BBB), mediate neuroprotection and modulate regenerative processes. For these reasons, extracellular vesicles represent a promising biomarker in neurological disorders as well as an interesting starting point for the development of novel therapeutic strategies. Herein, we review the role of the EVs in the pathogenesis of neurological disease, discussing their potential clinical applications
    • …
    corecore