530 research outputs found

    Telescopes and space exploration

    Get PDF
    The necessity for different types of telescopes for astronomical investigations is discussed. Major findings in modern astronomy by ground-based and spaceborne telescopes are presented. Observations of the Crab Nebula, solar flares, interstellar gas, and the Black Hole are described. The theory of the oscillating universe is explored. Operating and planned telescopes are described

    Telescopes and space exploration

    Get PDF
    Progress in contemporary astronomy and astrophysics is shown to depend on complementary investigations with sensitive telescopes operating in several wavelength regions, some of which can be on the Earth's surface and others of which must be in space

    Millimeter wave radiometry as a means of determining cometary surface and subsurface temperature

    Get PDF
    Thermal emission spectra for a variety of cometary nucleus models were evaluated by a radiative transfer technique adapted from modeling of terrestrial ice and snow fields. It appears that millimeter wave sensing from an interplanetary spacecraft is the most effective available means for distinguishing between alternate models of the nucleus and for evaluating the thermal state of the layer which is below the instantaneous surface where modern theories of the nucleus indicate that sublimation of the cometary volatiles actually occurs

    A study on Apple ber to identify the suitability of new product development

    Get PDF
    This study emphasis on the physico-chemical properties of a new ber variety (Apple ber) originated in Thailand and slowly emerging in many parts of the world. The analysis is done under two different conditions the one being controlled and second one is blanched. The analysis revealed that the controlled condition is superior in physico-chemical properties than the blanched one. Also, proximate analysis was carried out on the fruit and its powdered form. In this analysis also controlled condition parameters were ahead of blanched. New products were developed with the Apple ber powder

    Ultramafic xenoliths from the Bearpaw Mountains, Montana, USA: evidence for multiple metasomatic events in the lithospheric mantle beneath the Wyoming craton

    Get PDF
    Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountains volcanic field (Montana, USA), derived from the lower lithosphere of the Wyoming craton, can be divided based on textural criteria into tectonite and cumulate groups. The tectonites consist of strongly depleted spinel lherzolites, harzburgites and dunites. Although their mineralogical compositions are generally similar to those of spinel peridotites in off-craton settings, some contain pyroxenes and spinels that have unusually low Al2O3 contents more akin to those found in cratonic spinel peridotites. Furthermore, the tectonite peridotites have whole-rock major element compositions that tend to be significantly more depleted than non-cratonic mantle spinel peridotites (high MgO, low CaO, Al2O3 and TiO2) and resemble those of cratonic mantle. These compositions could have been generated by up to 30% partial melting of an undepleted mantle source. Petrographic evidence suggests that the mantle beneath the Wyoming craton was re-enriched in three ways: (1) by silicate melts that formed mica websterite and clinopyroxenite veins; (2) by growth of phlogopite from K-rich hydrous fluids; (3) by interaction with aqueous fluids to form orthopyroxene porphyroblasts and orthopyroxenite veins. In contrast to their depleted major element compositions, the tectonite peridotites are mostly light rare earth element (LREE)-enriched and show enrichment in fluid-mobile elements such as Cs, Rb, U and Pb on mantle-normalized diagrams. Lack of enrichment in high field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf) suggests that the tectonite peridotites have been metasomatized by a subduction-related fluid. Clinopyroxenes from the tectonite peridotites have distinct U-shaped REE patterns with strong LREE enrichment. They have 143Nd/144Nd values that range from 0·5121 (close to the host minette values) to 0·5107, similar to those of xenoliths from the nearby Highwood Mountains. Foliated mica websterites also have low 143Nd/144Nd values (0·5113) and extremely high 87Sr/86Sr ratios in their constituent phlogopite, indicating an ancient (probably mid-Proterozoic) enrichment. This enriched mantle lithosphere later contributed to the formation of the high-K Eocene host magmas. The cumulate group ranges from clinopyroxene-rich mica peridotites (including abundant mica wehrlites) to mica clinopyroxenites. Most contain >30% phlogopite. Their mineral compositions are similar to those of phenocrysts in the host minettes. Their whole-rock compositions are generally poorer in MgO but richer in incompatible trace elements than those of the tectonite peridotites. Whole-rock trace element patterns are enriched in large ion lithophile elements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb, Ta Zr and Hf) as in the host minettes, and their Sr–Nd isotopic compositions are also identical to those of the minettes. Their clinopyroxenes are LREE-enriched and formed in equilibrium with a LREE-enriched melt closely resembling the minettes. The cumulates therefore represent a much younger magmatic event, related to crystallization at mantle depths of minette magmas in Eocene times, that caused further metasomatic enrichment of the lithosphere

    Physical Conditions in Circumstellar Gas surrounding SN 1987A 12 Years After Outburst

    Get PDF
    Two-dimensional spectra of Supernova 1987A were obtained on 1998 November 14-15 (4282 days after outburst) with the Space Telescope Imaging Spectrograph (STIS) on board the Hubble Space Telescope (HST). The slit sampled portions of the inner circumstellar ring at the east and west ansae as well as small sections of both the northern and southern outer rings. The temperature and density at these locations are estimated by nebular analysis of [N II], [O III], and [S II] emission line ratios, and with time-dependent photoionization/recombination models. The results from these two methods are mutually consistent. The electron density in the inner ring is ~ 4000 cm-3 for S II, with progressively lower densities for N II and O III. The electron temperatures determined from [N II] and [O III] line ratios are ~11,000 K and \~22,000 K, respectively. These results are consistent with evolutionary trends in the circumstellar gas from similar measurements at earlier epochs. We find that emission lines from the outer rings come from gas of lower density (n_e \la 2000 cm-3) than that which emits the same line in the inner ring. The N/O ratio appears to be the same in all three rings. Our results also suggest that the CNO abundances in the northern outer ring are the same as in the inner ring, contrary to earlier results of Panagia et al. (1996). Physical conditions in the southern outer ring are less certain because of poorer signal-to-noise data. The STIS spectra also reveal a weak Ha emission redshifted by ~100 km s-1 at p.a. 103\arcdeg that coincides with the recently discovered new regions that are brightening (Lawrence et al. 2000). This indicates that the shock interaction in the SE section of the inner ring commenced over a year before it became apparent in HST images.Comment: 25 pages, 6 figures, to appear in December 1, 2000 Astrophysical Journa

    Element-Specific Depth Profile of Magnetism and Stoichiometry at the La0.67Sr0.33MnO3/BiFeO3 Interface

    Get PDF
    Depth-sensitive magnetic, structural and chemical characterization is important in the understanding and optimization of novel physical phenomena emerging at interfaces of transition metal oxide heterostructures. In a simultaneous approach we have used polarized neutron and resonant X-ray reflectometry to determine the magnetic profile across atomically sharp interfaces of ferromagnetic La0.67Sr0.33MnO3 / multiferroic BiFeO3 bi-layers with sub-nanometer resolution. In particular, the X-ray resonant magnetic reflectivity measurements at the Fe and Mn resonance edges allowed us to determine the element specific depth profile of the ferromagnetic moments in both the La0.67Sr0.33MnO3 and BiFeO3 layers. Our measurements indicate a magnetically diluted interface layer within the La0.67Sr0.33MnO3 layer, in contrast to previous observations on inversely deposited layers. Additional resonant X-ray reflection measurements indicate a region of an altered Mn- and O-content at the interface, with a thickness matching that of the magnetic diluted layer, as origin of the reduction of the magnetic moment.Comment: 13 pages, 4 figures, supplemental material include

    The Asymmetric Wind in M82

    Get PDF
    We have obtained detailed imaging Fabry-Perot observations of the nearby galaxy M82, in order to understand the physical association between the high-velocity outflow and the starburst nucleus. The observed velocities of the emitting gas in M82 reveal a bipolar outflow of material, originating from the bright starburst regions in the galaxy's inner disk, but misaligned with respect to the galaxy spin axis. The deprojected outflow velocity increases with radius from 525 to 655 km/s. Spectral lines show double components in the centers of the outflowing lobes, with the H-alpha line split by ~300 km/s over a region almost a kiloparsec in size. The filaments are not simple surfaces of revolution, nor is the emission distributed evenly over the surfaces. We model these lobes as a composite of cylindrical and conical structures, collimated in the inner ~500 pc but expanding at a larger opening angle of ~25 degrees beyond that radius. We compare our kinematic model with simulations of starburst-driven winds in which disk material surrounding the source is entrained by the wind. The data also reveal a remarkably low [NII]/H-alpha ratio in the region of the outflow, indicating that photoionization by the nuclear starburst may play a significant role in the excitation of the optical filament gas, particularly near the nucleus.Comment: 42 pages AASTeX with 16 figures; accepted for publication in ApJ; figures reformatted for better printin
    corecore