144 research outputs found

    Group status drives majority and minority integration preferences

    Get PDF
    WOS:000300955100009 (Nº de Acesso Web of Science)“Prémio Científico ISCTE-IUL 2013”This research examined preferences for national-and campus-level assimilative and pluralistic policies among Black and White students under different contexts, as majority-and minority-group members. We targeted attitudes at two universities, one where 85% of the student body is White, and another where 76% of students are Black. The results revealed that when a group constituted the majority, its members generally preferred assimilationist policies, and when a group constituted the minority, its members generally preferred pluralistic policies. The results support a functional perspective: Both majority and minority groups seek to protect and enhance their collective identities

    Low-Noise Ku-Band Receiver Frontend with Switchable SIW Filters for Cubesat Applications

    Get PDF
    This paper proposes a low-noise receiver frontend for nanosatellite and Cubesat platforms. The frontend is composed by a Low-Noise Amplifier (LNA) and two Substrate Integrated Waveguide (SIW) filters, providing a frequency reconfigurability to the system. The two filters operate in the 13 and in the 14 GHz uplink bands, and are selected by means of a pair of solid-state SPDT switches. As a results, 15.5 dB gain with 2.4 dB noise figure for the 13 GHz configuration and 17.8 dB gain with 2.3 dB noise figure for the 14 GHz configuration are obtained. This work is important since demonstrates a low-cost solution for satellite radio apparatuses based on commercial components on a standard PCB

    On the monotone stability approach to BSDEs with jumps: Extensions, concrete criteria and examples

    Full text link
    We show a concise extension of the monotone stability approach to backward stochastic differential equations (BSDEs) that are jointly driven by a Brownian motion and a random measure for jumps, which could be of infinite activity with a non-deterministic and time inhomogeneous compensator. The BSDE generator function can be non convex and needs not to satisfy global Lipschitz conditions in the jump integrand. We contribute concrete criteria, that are easy to verify, for results on existence and uniqueness of bounded solutions to BSDEs with jumps, and on comparison and a-priori LL^{\infty}-bounds. Several examples and counter examples are discussed to shed light on the scope and applicability of different assumptions, and we provide an overview of major applications in finance and optimal control.Comment: 28 pages. Added DOI https://link.springer.com/chapter/10.1007%2F978-3-030-22285-7_1 for final publication, corrected typo (missing gamma) in example 4.1

    The ArDM experiment

    Get PDF
    The aim of the ArDM project is the development and operation of a one ton double-phase liquid argon detector for direct Dark Matter searches. The detector measures both the scintillation light and the ionization charge from ionizing radiation using two independent readout systems. This paper briefly describes the detector concept and presents preliminary results from the ArDM R&D program, including a 3 l prototype developed to test the charge readout system.Comment: Proceedings of the Epiphany 2010 Conference, to be published in Acta Physica Polonica

    Search for anomalies in the {\nu}e appearance from a {\nu}{\mu} beam

    Get PDF
    We report an updated result from the ICARUS experiment on the search for {\nu}{\mu} ->{\nu}e anomalies with the CNGS beam, produced at CERN with an average energy of 20 GeV and travelling 730 km to the Gran Sasso Laboratory. The present analysis is based on a total sample of 1995 events of CNGS neutrino interactions, which corresponds to an almost doubled sample with respect to the previously published result. Four clear {\nu}e events have been visually identified over the full sample, compared with an expectation of 6.4 +- 0.9 events from conventional sources. The result is compatible with the absence of additional anomalous contributions. At 90% and 99% confidence levels the limits to possible oscillated events are 3.7 and 8.3 respectively. The corresponding limit to oscillation probability becomes consequently 3.4 x 10-3 and 7.6 x 10-3 respectively. The present result confirms, with an improved sensitivity, the early result already published by the ICARUS collaboration

    Underground operation of the ICARUS T600 LAr-TPC: first results

    Full text link
    Open questions are still present in fundamental Physics and Cosmology, like the nature of Dark Matter, the matter-antimatter asymmetry and the validity of the particle interaction Standard Model. Addressing these questions requires a new generation of massive particle detectors exploring the subatomic and astrophysical worlds. ICARUS T600 is the first large mass (760 ton) example of a novel detector generation able to combine the imaging capabilities of the old famous "bubble chamber" with an excellent energy measurement in huge electronic detectors. ICARUS T600 now operates at the Gran Sasso underground laboratory, studying cosmic rays, neutrino oscillation and proton decay. Physical potentialities of this novel telescope are presented through few examples of neutrino interactions reconstructed with unprecedented details. Detector design and early operation are also reported.Comment: 14 pages, 8 figures, 2 tables. Submitted to Jins

    Precise 3D track reconstruction algorithm for the ICARUS T600 liquid argon time projection chamber detector

    Get PDF
    Liquid Argon Time Projection Chamber (LAr TPC) detectors offer charged particle imaging capability with remarkable spatial resolution. Precise event reconstruction procedures are critical in order to fully exploit the potential of this technology. In this paper we present a new, general approach of three-dimensional reconstruction for the LAr TPC with a practical application to track reconstruction. The efficiency of the method is evaluated on a sample of simulated tracks. We present also the application of the method to the analysis of real data tracks collected during the ICARUS T600 detector operation with the CNGS neutrino beam.Comment: Submitted to Advances in High Energy Physic

    Precision measurement of the neutrino velocity with the ICARUS detector in the CNGS beam

    Get PDF
    During May 2012, the CERN-CNGS neutrino beam has been operated for two weeks for a total of 1.8 10^17 pot in bunched mode, with a 3 ns narrow width proton beam bunches, separated by 100 ns. This tightly bunched beam structure allows a very accurate time of flight measurement of neutrinos from CERN to LNGS on an event-by-event basis. Both the ICARUS-T600 PMT-DAQ and the CERN-LNGS timing synchronization have been substantially improved for this campaign, taking ad-vantage of additional independent GPS receivers, both at CERN and LNGS as well as of the deployment of the "White Rabbit" protocol both at CERN and LNGS. The ICARUS-T600 detector has collected 25 beam-associated events; the corresponding time of flight has been accurately evaluated, using all different time synchronization paths. The measured neutrino time of flight is compatible with the arrival of all events with speed equivalent to the one of light: the difference between the expected value based on the speed of light and the measured value is tof_c - tof_nu = (0.10 \pm 0.67stat. \pm 2.39syst.) ns. This result is in agreement with the value previously reported by the ICARUS collaboration, tof_c - tof_nu = (0.3 \pm 4.9stat. \pm 9.0syst.) ns, but with improved statistical and systematic errors.Comment: 21 pages, 13 figures, 1 tabl

    A search for the analogue to Cherenkov radiation by high energy neutrinos at superluminal speeds in ICARUS

    Get PDF
    The OPERA collaboration has claimed evidence of superluminal {\nu}{_\mu} propagation between CERN and the LNGS. Cohen and Glashow argued that such neutrinos should lose energy by producing photons and e+e- pairs, through Z0 mediated processes analogous to Cherenkov radiation. In terms of the parameter delta=(v^2_nu-v^2_c)/v^2_c, the OPERA result implies delta = 5 x 10^-5. For this value of \delta a very significant deformation of the neutrino energy spectrum and an abundant production of photons and e+e- pairs should be observed at LNGS. We present an analysis based on the 2010 and part of the 2011 data sets from the ICARUS experiment, located at Gran Sasso National Laboratory and using the same neutrino beam from CERN. We find that the rates and deposited energy distributions of neutrino events in ICARUS agree with the expectations for an unperturbed spectrum of the CERN neutrino beam. Our results therefore refute a superluminal interpretation of the OPERA result according to the Cohen and Glashow prediction for a weak current analog to Cherenkov radiation. In particular no superluminal Cherenkov like e+e- pair or gamma emission event has been directly observed inside the fiducial volume of the "bubble chamber like" ICARUS TPC-LAr detector, setting the much stricter limit of delta < 2.5 10^-8 at the 90% confidence level, comparable with the one due to the observations from the SN1987A.Comment: 17 pages, 6 figure

    Experimental search for the LSND anomaly with the ICARUS detector in the CNGS neutrino beam

    Get PDF
    We report an early result from the ICARUS experiment on the search for nu_mu to nu_e signal due to the LSND anomaly. The search was performed with the ICARUS T600 detector located at the Gran Sasso Laboratory, receiving CNGS neutrinos from CERN at an average energy of about 20 GeV, after a flight path of about 730 km. The LSND anomaly would manifest as an excess of nu_e events, characterized by a fast energy oscillation averaging approximately to sin^2(1.27 Dm^2_new L/ E_nu) = 1/2. The present analysis is based on 1091 neutrino events, which are about 50% of the ICARUS data collected in 2010-2011. Two clear nu_e events have been found, compared with the expectation of 3.7 +/- 0.6 events from conventional sources. Within the range of our observations, this result is compatible with the absence of a LSND anomaly. At 90% and 99% confidence levels the limits of 3.4 and 7.3 events corresponding to oscillation probabilities of 5.4 10^-3 and 1.1 10^-2 are set respectively. The result strongly limits the window of open options for the LSND anomaly to a narrow region around (Dm^2, sin^2(2 theta))_new = (0.5 eV^2, 0.005), where there is an overall agreement (90% CL) between the present ICARUS limit, the published limits of KARMEN and the published positive signals of LSND and MiniBooNE Collaborations.Comment: 10 pages, 7 figure
    corecore