4,294 research outputs found

    Neogene to Quaternary stratigraphic evolution of the Antarctic Peninsula, Pacific Margin offshore of Adelaide Island:Transitions from a non-glacial, through glacially-influenced to a fully glacial state

    Get PDF
    A detailed morphologic and seismic stratigraphic analysis of the continental margin offshore of Adelaide Island on the Pacific Margin of the Antarctic Peninsula (PMAP) is described based on the study of a regular network of reflection multichannel seismic profiles and swath bathymetry. We present an integrated study of the margin spanning the shelf to the continental rise and establish novel chronologic constraints and offer new interpretations on tectonic evolution and environmental changes affecting the PMAP. The stratigraphic stacking patterns record major shifts in the depositional style of the margin that outline three intervals in its evolution. The first non-glacial interval (Early Cretaceous to middle Miocene) encompasses a transition from an active to a passive margin (early Miocene). The second glacially-influenced interval (middle to late Miocene) is marked by pronounced aggradational sedimentary stacking and subsidence. Ice sheets advanced over the middle shelf of the margin at the end of this second interval, while the outer shelf experienced rare progradational events. The third, fully glaciated interval shows clear evidence of glacially dominated conditions on the margin. This interval divides into three minor stages. During the first stage (late Miocene to the beginning of the early Pliocene), frequent grounded ice advances to the shelf break began, depositing an initial progradational unit. A major truncation surface marked the end of this stage, which coincided with extensive mass transport deposits at the base of the slope. During the second progradational glacial margin stage (early Pliocene to middle Pleistocene), stacking patterns record clearly prograding glacial sequences. The beginning of the third aggradational glacial margin stage (middle Pleistocene to present) corresponded to an important shift in global climate during the Mid-Pleistocene Transition. Morphosedimentary characteristics observed along the margin today began to develop during the latest Miocene but did not become fully established until sometime during the interval between the end of the Pliocene and middle Pleistocene. Between these two time intervals, the northeast lateral migration of the Marguerite Trough also played a critical role in margin evolution, as it controlled ice sheet drainage pathways across the shelf, which in turn influenced development of slope and rise morphologies. Areas offshore from Adelaide Island differ from other areas of the PMAP due to changes in sedimentary processes that resulted from migration of the trough. This study confirms that the PMAP represents an exceptional locality for decoding, reconstructing and linking past tectonic and climatic changes. The study area specifically records not only the most relevant changes in depositional style, but also the relative importance of persistent along- and down-slope sedimentary processes. Our study approach can be extended to other areas and integrated with additional techniques to understand the evolution and the global linkages of the entire Antarctic continental margin and the ice sheets

    Strain balanced quantum posts

    Get PDF
    Quantum posts are assembled by epitaxial growth of closely spaced quantum dot layers, modulating the composition of a semiconductor alloy, typically InGaAs. In contrast with most self-assembled nanostructures, the height of quantum posts can be controlled with nanometer precision, up to a maximum value limited by the accumulated stress due to the lattice mismatch. Here we present a strain compensation technique based on the controlled incorporation of phosphorous, which substantially increases the maximum attainable quantum post height. The luminescence from the resulting nanostructures presents giant linear polarization anisotropy.Comment: Submitted to Applied Physics Letters (7th March 2011). 4 pages, 4 figure

    Proteomic identification and characterization of hepatic glyoxalase 1 dysregulation in non-alcoholic fatty liver disease

    Get PDF
    Background: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease worldwide. However, its molecular pathogenesis is incompletely characterized and clinical biomarkers remain scarce. The aims of these experiments were to identify and characterize liver protein alterations in an animal model of early, diet-related, liver injury and to assess novel candidate biomarkers in NAFLD patients. Methods: Liver membrane and cytosolic protein fractions from high fat fed apolipoprotein E knockout (ApoE−/−) animals were analyzed by quantitative proteomics, utilizing isobaric tags for relative and absolute quantitation (iTRAQ) combined with nano-liquid chromatography and tandem mass spectrometry (nLC-MS/MS). Differential protein expression was confirmed independently by immunoblotting and immunohistochemistry in both murine tissue and biopsies from paediatric NAFLD patients. Candidate biomarkers were analyzed by enzyme-linked immunosorbent assay in serum from adult NAFLD patients. Results: Through proteomic profiling, we identified decreased expression of hepatic glyoxalase 1 (GLO1) in a murine model. GLO1 protein expression was also found altered in tissue biopsies from paediatric NAFLD patients. In vitro experiments demonstrated that, in response to lipid loading in hepatocytes, GLO1 is first hyperacetylated then ubiquitinated and degraded, leading to an increase in reactive methylglyoxal. In a cohort of 59 biopsy-confirmed adult NAFLD patients, increased serum levels of the primary methylglyoxal-derived advanced glycation endproduct, hydroimidazolone (MG-H1) were significantly correlated with body mass index (r = 0.520, p < 0.0001). Conclusion: Collectively these results demonstrate the dysregulation of GLO1 in NAFLD and implicate the acetylation-ubquitination degradation pathway as the functional mechanism. Further investigation of the role of GLO1 in the molecular pathogenesis of NAFLD is warranted. Keywords: Non-alcoholic fatty liver disease, Glyoxalase, Methylglyoxal, Proteomics, iTRA

    Non-local scattering control in coupled resonator networks

    Full text link
    We demonstrate scattering control of Gaussian-like wave packets propagating with constant envelope velocity and invariant waist through coupled resonator optical waveguides (CROW) via an external resonator coupled to multiple sites of the CROW. We calculate the analytical reflectance and transmittance using standard scattering methods from waveguide quantum electrodynamics and show it is possible to approximate them for an external resonator detuned to the CROW. Our analytical and approximate results are in good agreement with numerical simulations. We engineer various configurations using an external resonator coupled to two sites of a CROW to show light trapping with effective exponential decay between the coupling sites, wave packet splitting into two pairs of identical Gaussian-like wave packets, and a non-local Mach-Zehnder interferometer.Comment: 20 pages, 7 figure

    Uncovering Shakespeare\u27s Sisters in Special Collections and College Archives, Musselman Library

    Full text link
    Foreword by Professor Suzanne J. Flynn I have taught the first-year seminar, Shakespeare’s Sisters, several times, and over the years I have brought the seminar’s students to the Folger Shakespeare Library in Washington, D.C. There, the wonderful librarians have treated the students to a special exhibit of early women’s manuscripts and first editions, beginning with letters written by Elizabeth I and proceeding through important works by seventeen and eighteenth-century women authors such as Aemelia Lanyer, Anne Finch, Aphra Behn, and Mary Wollstonecraft. This year I worked with Carolyn Sautter, the Director of Special Collections and College Archives, to give my 2018 seminar students the opportunity to produce a sequel to the Folger exhibit of early modern women writers. Special Collections houses an impressive array of first editions from the nineteenth and twentieth centuries, many of them acquired from Thomas Y. Cooper, the former editor of the Hanover Evening Sun newspaper, who donated over 1600 items to Musselman Library in 1965. Working with Kerri Odess-Harnish, we chose first editions of eight significant works of literature written by American and British women from the mid-nineteenth through the mid-twentieth centuries. The students worked in pairs, researching a single book and producing a report that outlines important biographical facts about the author, the book’s publication and reception history, and finally the significance of the book in the years since its publication. We hope that our project will draw attention to the wealth of literary treasures housed in Special Collections at Musselman Library, but especially to these works by eight of “Shakespeare’s Sisters.

    Enhancement of Electrical Conduction and Phonon Scattering in Ga2O3(ZnO)9-In2O3(ZnO)9 Compounds by Modification of Interfaces at the Nanoscale

    Get PDF
    The Ga2O3(ZnO)9 and In2O3(ZnO)9 homologous phases have attracted attention as thermoelectric (TE) oxides due to their layered structures. Ga2O3(ZnO)9 exhibits low thermal conductivity, while In2O3(ZnO)9 possesses higher electrical conductivity. The TE properties of the solid solution of Ga2O3(ZnO)9-In2O3(ZnO)9 were explored and correlated with changes in the crystal structure. High-quality (1−x)Ga2O3(ZnO)9-(ZnO)9 (x = 0.0 to 1.0) ceramics were prepared by the solid-state route using B2O3 and Nd2O3 as additives. The crystal structures were analysed by x-ray diffraction, high-resolution transmission electron microscopy and atomic resolution scanning transmission electron microscopy–high-angle annular dark field imaging–energy dispersive x-ray spectroscopy (STEM–HAADF–EDS) techniques. A layered superstructure with compositional modulations was observed in all samples in the (1−x)Ga2O3(ZnO)9-xIn2O3(ZnO)9 system. All the ceramics exhibited nanoscale structural features identified as Ga- and In-rich inversion boundaries (IBs). Substitution of 20 mol.% In (x = 0.2) in the Ga2O3(ZnO)9 compounds generated basal and pyramidal indium IBs typically found in the In2O3(ZnO)m system. The (Ga0.8In0.2)2O3(ZnO)9 compound does not exhibit the structural features of the Cmcm Ga2O3(ZnO)9 compound, which is formed by a stacking of Ga-rich IBs along the pyramidal plane of the wurtzite ZnO, but features that resemble the crystal structure exhibited by the R3¯¯¯m In2O3(ZnO)m with basal and pyramidal indium IBs. The structural changes led to improved TE performance. For example, (Ga0.8In0.2)2O3(ZnO)9 showed a low thermal conductivity of 2 W/m K and a high power factor of 150 μW/m K2 giving a figure of merit (ZT) of 0.07 at 900 K. This is the highest ZT for Ga2O3(ZnO)9-based homologous compounds and is comparable with the highest ZT reported for In2O3(ZnO)9 homologous compounds

    The GAPS Programme with HARPS-N at TNG. X. Differential abundances in the XO-2 planet hosting binary

    Get PDF
    Binary stars hosting exoplanets are a unique laboratory where chemical tagging can be performed to measure with high accuracy the elemental abundances of both stellar components, with the aim to investigate the formation of planets and their subsequent evolution. Here, we present a high-precision differential abundance analysis of the XO-2 wide stellar binary based on high resolution HARPS-N@TNG spectra. Both components are very similar K-dwarfs and host planets. Since they formed presumably within the same molecular cloud, we expect they should possess the same initial elemental abundances. We investigate if the presence of planets can cause some chemical imprints in the stellar atmospheric abundances. We measure abundances of 25 elements for both stars with a range of condensation temperature TC=401741T_{\rm C}=40-1741 K, achieving typical precisions of 0.07\sim 0.07 dex. The North component shows abundances in all elements higher by +0.067±0.032+0.067 \pm 0.032 dex on average, with a mean difference of +0.078 dex for elements with TC>800T_{\rm C} > 800 K. The significance of the XO-2N abundance difference relative to XO-2S is at the 2σ2\sigma level for almost all elements. We discuss the possibility that this result could be interpreted as the signature of the ingestion of material by XO-2N or depletion in XO-2S due to locking of heavy elements by the planetary companions. We estimate a mass of several tens of MM_{\oplus} in heavy elements. The difference in abundances between XO-2N and XO-2S shows a positive correlation with the condensation temperatures of the elements, with a slope of (4.7±0.9)×105(4.7 \pm 0.9) \times 10^{-5} dex K1^{-1}, which could mean that both components have not formed terrestrial planets, but that first experienced the accretion of rocky core interior to the subsequent giant planets.Comment: 10 pages, 5 figures, accepted by Astronomy & Astrophysics. Numbering of the series change
    corecore