31 research outputs found

    Water quality and planktonic microbial assemblages of isolated wetlands in an agricultural landscape

    Get PDF
    Author Posting. Š The Author(s), 2011. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Wetlands 31 (2011): 885-894, doi:10.1007/s13157-011-0203-6.Wetlands provide ecosystem services including flood protection, water quality enhancement, food chain support, carbon sequestration, and support regional biodiversity. Wetlands occur in human-altered landscapes, and the ongoing ability of these wetlands to provide ecosystem services is lacking. Additionally, the apparent lack of connection of some wetlands, termed geographically isolated, to permanent waters has resulted in little regulatory recognition. We examined the influence of intensive agriculture on water quality and planktonic microbial assemblages of intermittently inundated wetlands. We sampled 10 reference and 10 agriculturally altered wetlands in the Gulf Coastal Plain of Georgia. Water quality measures included pH, alkalinity, dissolved organic carbon, nutrients (nitrate, ammonium, and phosphate), and filterable solids (dry mass and ash-free dry mass). We measured abundance and relative size distribution of the planktonic microbial assemblage (< 45 Οm) using flow cytometry. Water quality in agricultural wetlands was characterized by elevated nutrients, pH, and suspended solids. Autotrophic microbial cells were largely absent from both wetland types. Heterotrophic microbial abundance was influenced by nutrients and suspended matter concentration. Agriculture caused changes in microbial assemblages forming the base of wetland food webs. Yet, these wetlands potentially support important ecological services in a highly altered landscape.Funding was provided by the Joseph W. Jones Ecological Research Center.2012-07-2

    Selective mGluR1 Antagonist EMQMCM Inhibits the Kainate-Induced Excitotoxicity in Primary Neuronal Cultures and in the Rat Hippocampus

    Get PDF
    Abundant evidence suggests that indirect inhibitory modulation of glutamatergic transmission, via metabotropic glutamatergic receptors (mGluR), may induce neuroprotection. The present study was designed to determine whether the selective antagonist of mGluR1 (3-ethyl-2-methyl-quinolin-6-yl)-(4-methoxy-cyclohexyl)-methanone methanesulfonate (EMQMCM), showed neuroprotection against the kainate (KA)-induced excitotoxicity in vitro and in vivo. In in vitro studies on mouse primary cortical and hippocampal neuronal cultures, incubation with KA (150 μM) induced strong degeneration [measured as lactate dehydrogenase (LDH) efflux] and apoptosis (measured as caspase-3 activity). EMQMCM (0.1–100 μM) added 30 min to 6 h after KA, significantly attenuated the KA-induced LDH release and prevented the increase in caspase-3 activity in the cultures. Those effects were dose- and time-dependent. In in vivo studies KA (2.5 nmol/1 μl) was unilaterally injected into the rat dorsal CA1 hippocampal region. Degeneration was calculated by counting surviving neurons in the CA pyramidal layer using stereological methods. It was found that EMQMCM (5–10 nmol/1 μl) injected into the dorsal hippocampus 30 min, 1 h, or 3 h (the higher dose only) after KA significantly prevented the KA-induced neuronal degeneration. In vivo microdialysis studies in rat hippocampus showed that EMQMCM (100 μM) significantly increased γ-aminobutyric acid (GABA) and decreased glutamate release. When perfused simultaneously with KA, EMQMCM substantially increased GABA release and prevented the KA-induced glutamate release. The obtained results indicate that the mGluR1 antagonist, EMQMCM, may exert neuroprotection against excitotoxicity after delayed treatment (30 min to 6 h). The role of enhanced GABAergic transmission in the neuroprotection is postulated

    Anthropic resource exploitation and use of the territory at the onset of social complexity in the Neolithic-Chalcolithic Western Pyrenees: a multi-isotope approach

    Get PDF
    Carbon (δ13C) and nitrogen (δ15N) stable isotope analyses from bone collagen provide information about the dietary protein input, while strontium isotopes (87Sr/86Sr) from tooth enamel give us data about provenance and potential territorial mobility of past populations. To date, isotopic results on the prehistory of the Western Pyrenees are scarce. In this article, we report human and faunal values of the mentioned isotopes from the Early-Middle Neolithic site of Fuente Hoz (Anuntzeta) and the Late Neolithic/Early Chalcolithic site of Kurtzebide (Letona, Zigoitia). The main objectives of this work are to analyze the dietary and territorial mobility patterns of these populations. Furthermore, as an additional aim, we will try to discuss social ranking based on the isotope data and existing literature on this topic in the region of study. Our results show that, based on the bioavailable Sr values, both purported local and non-local humans were buried together at the sites. Additionally, they suggest similar resource consumption based on C3 terrestrial resources (i.e. ovicaprids, bovids, and suids) as the main part of the protein input. Overall, this study sheds light on how individuals from different backgrounds were still buried together and shared the same dietary lifestyle at a time in the Prehistory of Iberia when social complexities started to appear

    Grazing impacts of the invasive bivalve Limnoperna fortunei (Dunker, 1857) on single-celled, colonial and filamentous cyanobacteria

    No full text
    Feeding behavior of the invasive bivalve Limnoperna fortunei in the presence of single-celled, colonial, and filamentous cyanobacteria was tested in laboratory experiments to evaluate the effects of size and shape on mussel feeding. The first hypothesis holds that golden mussel filters more efficiently smaller particles, such as single cells of Microcystis, which could be more easily assimilated by its filtering apparatus. The second hypothesis sustains that L. fortunei filters more efficiently rounded colonies, such as Microcystis, which would be more easily ingested than lengthy filamentous, such as Planktothrix. Filtration rates of golden mussel in the presence of single-celled, colonial and filamentous cyanobacteria were similar. Nevertheless, there was a great difference in the ingestion and pseudofeces production rates. Single cells were widely accepted as food, while filamentous and colonial cyanobacteria were massively expelled as pseudofeces. The results confirmed the first hypothesis that golden mussel prefers to ingest smaller particles. The second hypothesis was rejected since filamentous were preferentially ingested than colonial cyanobacteria. Golden mussel has the potential to remove toxic cells (Microcystis), however this potential would be reduced in cyanobacteria blooms, where colonial forms which are preferentially rejected by L. fortunei, are predominant. In this case, the presence of this invasive bivalve could also enhance the occurrence of blooms by rejecting colonial and filamentous cyanobacteria in pseudofeces
    corecore