40 research outputs found

    A Past Discharges Assimilation System for Ensemble Streamflow Forecasts over France - Part 1: Description and Validation of the Assimilation System

    Get PDF
    Two Ensemble Streamflow Prediction Systems (ESPSs) have been set up at Météo-France. They are based on the French SIM distributed hydrometeorological model. A deterministic analysis run of SIM is used to initialize the two ESPSs. In order to obtain a better initial state, a past discharges assimilation system has been implemented into this analysis SIM run, using the Best Linear Unbiased Estimator (BLUE). Its role is to improve the model soil moisture by using streamflow observations in order to better simulate streamflow. The skills of the assimilation system were assessed for a 569-day period on six different configurations, including two different physics schemes of the model (the use of an exponential profile of hydraulic conductivity or not) and, for each one, three different ways of considering the model soil moisture in the BLUE state variables. Respect of the linearity hypothesis of the BLUE was verified by assessing of the impact of iterations of the BLUE. The configuration including the use of the exponential profile of hydraulic conductivity and the combination of the moisture of the two soil layers in the state variable showed a significant improvement of streamflow simulations. It led to a significantly better simulation than the reference one, and the lowest soil moisture corrections. These results were confirmed by the study of the impacts of the past discharge assimilation system on a set of 49 independent stations.JRC.H.7-Climate Risk Managemen

    A Past Discharge Assimilation System for Ensemble Streamflow Forecasts over France - Part 2: Impact on the Ensemble Streamflow Forecasts

    Get PDF
    The use of ensemble streamflow forecasts is developing in the international flood forecasting services. Ensemble streamflow forecast systems can provide more accurate forecasts and useful information about the uncertainty of the forecasts, thus improving the assessment of risks. Nevertheless, these systems, like all hydrological forecasts, suffer from errors on initialization or on meteorological data, which lead to hydrological prediction errors. This article, which is the second part of a 2-part article, concerns the impacts of initial states, improved by a streamflow assimilation system, on an ensemble streamflow prediction system over France. An assimilation system was implemented to improve the streamflow analysis of the SAFRAN-ISBA-MODCOU (SIM) hydro-meteorological suite, which initializes the ensemble streamflow forecasts at Météo-France. This assimilation system, using the Best Linear Unbiased Estimator (BLUE) and modifying the initial soil moisture states, showed an improvement of the streamflow analysis with low soil moisture increments. The final states of this suite were used to initialize the ensemble streamflow forecasts of Météo-France, which are based on the SIM model and use the European Centre for Medium-range Weather Forecasts (ECMWF) 10-day Ensemble Prediction System (EPS). Two different configurations of the assimilation system were used in this study: the first with the classical SIM model and the second using improved soil physics in ISBA. The effects of the assimilation system on the ensemble streamflow forecasts were assessed for these two configurations, and a comparison was made with the original (i.e. without data assimilation and without the improved physics) ensemble streamflow forecasts. It is shown that the assimilation system improved most of the statistical scores usually computed for the validation of ensemble predictions (RMSE, Brier Skill Score and its decomposition, Ranked Probability Skill Score, False Alarm Rate, etc.), especially for the first few days of the time range. The assimilation was slightly more efficient for small basins than for large ones.JRC.H.7-Climate Risk Managemen

    Contributions from the DISC to accomplish the Aeolus mission objectives

    Get PDF
    The Aeolus Data Innovation and Science Cluster (DISC) supports the Aeolus mission with a wide range of activities from instrument and product quality monitoring over retrieval algorithm improvements to numerical weather prediction (NWP) impact assessments for wind and aerosols. The Aeolus DISC provides support to ESA, Cal/Val teams, numerical weather prediction (NWP) centers, and scientific users for instrument special operations and calibration, for the re-processing of Aeolus products from the past and through the provision of bi-annual updates of the L1A, L1B, L2A and L2B operational processors. The Aeolus DISC is coordinated by DLR with partners from ECMWF, KNMI, Météo-France, TROPOS, DoRIT, ABB, s&t, serco, OLA, Physics Solutions, IB Reissig and Les Myriades involving more than 40 scientists and engineers. The presentation will highlight the Aeolus DISC activities with a focus for the year 2021 and early 2022 since the last Aeolus workshop in November 2020. This covers the evolution of the instrument performance including investigations of the cause of the on-going signal loss and the achieved improvement via dedicated laser tests in 2021. In addition, refinements of algorithms and correction of the wind bias will be discussed - including a known remaining seasonal bias in October and March as encountered during the re-processing campaigns. Finally, the strategy for the on-going and future re-processing campaigns will be addressed to inform the scientific community about the availability and quality of the re-processed data products. The Aeolus mission has fully achieved its mission objectives including the unprecedented demonstration of direct-detection Doppler wind lidar technology and high-power laser operation in space in the ultraviolet spectral region over its planned full mission lifetime of 3 years and 3 months. Aeolus wind products have clearly demonstrated positive impact on forecasts using several NWP models. Since early 2020, and thus only 1.5 years after launch, the Aeolus wind products are used in operation at various NWP centers worldwide. This was achieved even despite the larger than expected wind random errors due to lower initial atmospheric signal levels and the observed signal losses during the operation of the first and second laser. In addition to this incredible success, first scientific studies demonstrated the use of Aeolus for atmospheric dynamics research in the stratosphere and for the analysis of aerosol transport. These achievements of the Aeolus mission and its success were only possible with the essential and critical contributions from the Aeolus DISC. This demonstrates the need and potential for setting up such scientific consortia covering a wide range of expertise from instrument, processors, and scientific use of products for Earth Explorer type missions. The invaluable experience gained by the Aeolus DISC during the more then 3 years of Aeolus mission in orbit (preceded by a period of 20 years before launch by a similar study team) is a pre-requisite for a successful preparation of an operational follow-on Aeolus-2 mission

    Initialisation de l'eau du sol dans les modÚles de prévision. Tests préliminaires sur sol nu

    No full text
    This research report presents the first results of two methods for initializing the soil water content in the 2-layer version of the ISBA surface scheme (Noilhan and Planton, 1989). The first method consists of a variational assimilation using hourly observations of relative humidity at 2 meters over a 24-hour period. The second method is a sequential assimilation based on optimal interpolation, which considers temperature and relative humidity observations at 2 meters to correct for soil water every 6 hours. An initial evaluation of these two methods has been carried out over a bare-ground site from the HAPEX-MOBILHY 1986 field campaign, using simulated observations assumed to be error-free. Both methods are capable of rapidly converging towards soil water values close to the reference used to generate the observations. These two methods are compared with a simpler empirical technique used at the time in operational numerical weather prediction models at Météo-France. The superiority of the proposed methods is demonstrated and justified.Cette note de travail présente les premiers résultats de deux méthodes permettant d'initialiser l'eau du sol du schéma de surface ISBA (Noilhan et Planton, 1989) dans sa version à 2 couches. La premiÚre méthode est une assimilation variationnelle utilisant des observations horaires d'humidité relative à 2 mÚtres sur une période de 24 h. La seconde méthode est une assimilation séquentielle basée sur l'interpolation optimale qui considÚre des observations de température et humidité relative à 2 mÚtres pour corriger l'eau du sol toutes les 6 heures. Une premiÚre évaluation de ces deux méthodes est réalisée sur un site de sol nu de la campagne HAPEX-MOBILHY 1986 avec des observations simulées et supposées sans erreurs. Les deux méthodes sont capables de converger rapidement vers des valeurs d'eau du sol proches de la référence utilisée pour générer les observations. Ces deux méthodes sont comparées à une technique empirique plus simple qui était utilisée à l'époque dans les modÚles opérationnels de prévision numérique du temps à Météo-France. La supériorité des méthodes proposées est montrée et justifiée

    L'analyse dans le sol Ă  MĂ©tĂ©o-France. Partie 1 : Évaluation et perspectives Ă  l'Ă©chelle locale

    No full text
    Le code Fortran et les scripts Linux permettant d'obtenir les rĂ©sultats prĂ©sentĂ©s dans cette note sont disponibles sur GitHubIn this note, I present a local-scale, forced-mode evaluation of the soil analysis used operationally at MĂ©tĂ©o-France for the ARPEGE model. This analysis, based on an "optimal interpolation" approach, uses temperature and humidity observations at 2 meters. It is compared with a very similar method used operationally at ECMWF, as well as with a new "simplified 2D-Var" type approach that could replace it in the near future. I also examine an "ensemble Kalman filter" (EnKF) analysis widey used by the US hydrological community. In the second part, I assimilate observations of surface soil water with a repeatability of three days using 3 methods (2D-Var, Extended Kalman Filter, EnKF). I show that it is not necessary to use a 10-day assimilation window in a cycled analysis system. The impact of these observations is only significant if their error is comparable to that of the background field. Finally, I examine the possibility of combining these observations with more frequently available 2-meter data. All these tests use simulated observations (identical twin experiments). The results obtained are extremely encouraging, and argue in favor of developing "multi-observation" surface assimilation in the SURFEX outsourced system using the simplified 2D-Var approach.Je prĂ©sente dans cette note une Ă©valuation Ă  l'Ă©chelle locale et en mode forcĂ© de l’analyse dans le sol utilisĂ©e opĂ©rationnellement Ă  MĂ©tĂ©o-France pour le modĂšle ARPEGE. Cette analyse, basĂ©e sur une approche de type ”interpolation optimale”, utilise les observations de tempĂ©rature et humiditĂ© Ă  2 mĂštres. Elle est comparĂ©e Ă  une mĂ©thode trĂšs similaire utilisĂ©e opĂ©rationnellement au Centre EuropĂ©en (CEPMMT), ainsi qu’à une nouvelle approche de type ”2D-Var simplifiĂ©â€ qui pourrait la remplacer dans un futur proche. J’examine Ă©galement une analyse de type ”filtre de Kalman d’ensemble” (EnKF) actuellement trĂšs en vogue dans la communautĂ© hydrologique amĂ©ricaine. Dans une deuxiĂšme partie, j’assimile des observations d’eau du sol superficiel avec une rĂ©pĂ©titivitĂ© de trois jours par 3 mĂ©thodes (2D-Var, Filtre de Kalman Ă©tendu, EnKF). Je montre qu’il n’est pas nĂ©cessaire d’utiliser une fenĂȘtre d’assimilation de 10 jours dans un systĂšme d’analyse cyclĂ©. L’impact de ces observations n’est significatif que si leur erreur est comparable Ă  celle du champ d’essai. Finalement, je regarde la possibilitĂ© de combiner ces observations avec les donnĂ©es Ă  2 mĂštres disponibles plus frĂ©quemment. L’ensemble de ces tests utilise des observations simulĂ©es (expĂ©riences de type ”jumeaux identiques”). Les rĂ©sultats obtenus sont extrĂȘmement encourageants et plaident en faveur du dĂ©veloppement d’une assimilation de surface ”multi-observations” dans le systĂšme externalisĂ© SURFEX au moyen d’une mĂ©thode de type ”2D-Var simplifiĂ© ́”

    Initialisation de l'eau du sol dans les modÚles de prévision. Tests préliminaires sur sol nu

    No full text
    This research report presents the first results of two methods for initializing the soil water content in the 2-layer version of the ISBA surface scheme (Noilhan and Planton, 1989). The first method consists of a variational assimilation using hourly observations of relative humidity at 2 meters over a 24-hour period. The second method is a sequential assimilation based on optimal interpolation, which considers temperature and relative humidity observations at 2 meters to correct for soil water every 6 hours. An initial evaluation of these two methods has been carried out over a bare-ground site from the HAPEX-MOBILHY 1986 field campaign, using simulated observations assumed to be error-free. Both methods are capable of rapidly converging towards soil water values close to the reference used to generate the observations. These two methods are compared with a simpler empirical technique used at the time in operational numerical weather prediction models at Météo-France. The superiority of the proposed methods is demonstrated and justified.Cette note de travail présente les premiers résultats de deux méthodes permettant d'initialiser l'eau du sol du schéma de surface ISBA (Noilhan et Planton, 1989) dans sa version à 2 couches. La premiÚre méthode est une assimilation variationnelle utilisant des observations horaires d'humidité relative à 2 mÚtres sur une période de 24 h. La seconde méthode est une assimilation séquentielle basée sur l'interpolation optimale qui considÚre des observations de température et humidité relative à 2 mÚtres pour corriger l'eau du sol toutes les 6 heures. Une premiÚre évaluation de ces deux méthodes est réalisée sur un site de sol nu de la campagne HAPEX-MOBILHY 1986 avec des observations simulées et supposées sans erreurs. Les deux méthodes sont capables de converger rapidement vers des valeurs d'eau du sol proches de la référence utilisée pour générer les observations. Ces deux méthodes sont comparées à une technique empirique plus simple qui était utilisée à l'époque dans les modÚles opérationnels de prévision numérique du temps à Météo-France. La supériorité des méthodes proposées est montrée et justifiée

    L'analyse dans le sol Ă  MĂ©tĂ©o-France. Partie 1 : Évaluation et perspectives Ă  l'Ă©chelle locale

    No full text
    Le code Fortran et les scripts Linux permettant d'obtenir les rĂ©sultats prĂ©sentĂ©s dans cette note sont disponibles sur GitHubIn this note, I present a local-scale, forced-mode evaluation of the soil analysis used operationally at MĂ©tĂ©o-France for the ARPEGE model. This analysis, based on an "optimal interpolation" approach, uses temperature and humidity observations at 2 meters. It is compared with a very similar method used operationally at ECMWF, as well as with a new "simplified 2D-Var" type approach that could replace it in the near future. I also examine an "ensemble Kalman filter" (EnKF) analysis widey used by the US hydrological community. In the second part, I assimilate observations of surface soil water with a repeatability of three days using 3 methods (2D-Var, Extended Kalman Filter, EnKF). I show that it is not necessary to use a 10-day assimilation window in a cycled analysis system. The impact of these observations is only significant if their error is comparable to that of the background field. Finally, I examine the possibility of combining these observations with more frequently available 2-meter data. All these tests use simulated observations (identical twin experiments). The results obtained are extremely encouraging, and argue in favor of developing "multi-observation" surface assimilation in the SURFEX outsourced system using the simplified 2D-Var approach.Je prĂ©sente dans cette note une Ă©valuation Ă  l'Ă©chelle locale et en mode forcĂ© de l’analyse dans le sol utilisĂ©e opĂ©rationnellement Ă  MĂ©tĂ©o-France pour le modĂšle ARPEGE. Cette analyse, basĂ©e sur une approche de type ”interpolation optimale”, utilise les observations de tempĂ©rature et humiditĂ© Ă  2 mĂštres. Elle est comparĂ©e Ă  une mĂ©thode trĂšs similaire utilisĂ©e opĂ©rationnellement au Centre EuropĂ©en (CEPMMT), ainsi qu’à une nouvelle approche de type ”2D-Var simplifiĂ©â€ qui pourrait la remplacer dans un futur proche. J’examine Ă©galement une analyse de type ”filtre de Kalman d’ensemble” (EnKF) actuellement trĂšs en vogue dans la communautĂ© hydrologique amĂ©ricaine. Dans une deuxiĂšme partie, j’assimile des observations d’eau du sol superficiel avec une rĂ©pĂ©titivitĂ© de trois jours par 3 mĂ©thodes (2D-Var, Filtre de Kalman Ă©tendu, EnKF). Je montre qu’il n’est pas nĂ©cessaire d’utiliser une fenĂȘtre d’assimilation de 10 jours dans un systĂšme d’analyse cyclĂ©. L’impact de ces observations n’est significatif que si leur erreur est comparable Ă  celle du champ d’essai. Finalement, je regarde la possibilitĂ© de combiner ces observations avec les donnĂ©es Ă  2 mĂštres disponibles plus frĂ©quemment. L’ensemble de ces tests utilise des observations simulĂ©es (expĂ©riences de type ”jumeaux identiques”). Les rĂ©sultats obtenus sont extrĂȘmement encourageants et plaident en faveur du dĂ©veloppement d’une assimilation de surface ”multi-observations” dans le systĂšme externalisĂ© SURFEX au moyen d’une mĂ©thode de type ”2D-Var simplifiĂ© ́”

    Contribution a la definition d'une parametrisation des transferts entre le sol, la vegetation et l'atmosphere : analyse de sensibilite et insertion dans un modele mesoechelle

    No full text
    SIGLECNRS T Bordereau / INIST-CNRS - Institut de l'Information Scientifique et TechniqueFRFranc

    Étude du code radiatif du modùle EMERAUDE

    No full text
    A fast radiation code with two spectral bands (one for solar radiation and one for thermal radiation) developed for numerical weather prediction is evaluated in order to be used in the EMERAUDE general circulation model of the Direction de la Météorologie Nationale to simulate climate change scenarios (atmospheric carbon dioxide increase). Evaluations are carried out in a one-dimensional framework with standard atmospheres (McClatchey et al., 1971) and an experimental protocol proposed as part of the ICRCCM radiative transfer code intercomparison (Luther et al., 1988). Several adaptations have been necessary: to distinguish carbon dioxide from other gases with constant concentration, to represent the water vapor continuum and to spectrally average cloud optical properties. The results in terms of fluxes and temperature tendencies compare reasonably well with those obtained from more detailed models.Un code de rayonnement rapide à deux bandes spectrales (une pour le rayonnement solaire et une pour le rayonnement thermique) développé pour la prévision numérique du temps est évalué en vue d'une utilisation dans le modÚle de circulation générale EMERAUDE de la Direction de la Météorologie Nationale pour simuler des scénarios de changements climatiques (augmentation du gaz carbonique atmosphérique). Les évaluations sont réalisées dans un cadre unidimensionnel avec des atmosphÚres standard (McClatchey et al., 1971) et un protocole expérimental proposé dans le cadre de l'intercomparaison des codes de transferts radiatifs ICRCCM (Luther et al., 1988). Plusieurs adaptations ont été nécessaires : pour distinguer le gaz carbonique des autres gaz à concentration constante, pour représenter le continuum de la vapeur d'eau et moyenner spectralement les propriétés optiques des nuages. Les résultats en termes de flux et de tendances de température se comparent assez bien avec ceux issus de modÚles plus détaillés

    L'analyse dans le sol Ă  MĂ©tĂ©o-France. Partie 1 : Évaluation et perspectives Ă  l'Ă©chelle locale

    No full text
    Le code Fortran et les scripts Linux permettant d'obtenir les rĂ©sultats prĂ©sentĂ©s dans cette note sont disponibles sur GitHubIn this note, I present a local-scale, forced-mode evaluation of the soil analysis used operationally at MĂ©tĂ©o-France for the ARPEGE model. This analysis, based on an "optimal interpolation" approach, uses temperature and humidity observations at 2 meters. It is compared with a very similar method used operationally at ECMWF, as well as with a new "simplified 2D-Var" type approach that could replace it in the near future. I also examine an "ensemble Kalman filter" (EnKF) analysis widey used by the US hydrological community. In the second part, I assimilate observations of surface soil water with a repeatability of three days using 3 methods (2D-Var, Extended Kalman Filter, EnKF). I show that it is not necessary to use a 10-day assimilation window in a cycled analysis system. The impact of these observations is only significant if their error is comparable to that of the background field. Finally, I examine the possibility of combining these observations with more frequently available 2-meter data. All these tests use simulated observations (identical twin experiments). The results obtained are extremely encouraging, and argue in favor of developing "multi-observation" surface assimilation in the SURFEX outsourced system using the simplified 2D-Var approach.Je prĂ©sente dans cette note une Ă©valuation Ă  l'Ă©chelle locale et en mode forcĂ© de l’analyse dans le sol utilisĂ©e opĂ©rationnellement Ă  MĂ©tĂ©o-France pour le modĂšle ARPEGE. Cette analyse, basĂ©e sur une approche de type ”interpolation optimale”, utilise les observations de tempĂ©rature et humiditĂ© Ă  2 mĂštres. Elle est comparĂ©e Ă  une mĂ©thode trĂšs similaire utilisĂ©e opĂ©rationnellement au Centre EuropĂ©en (CEPMMT), ainsi qu’à une nouvelle approche de type ”2D-Var simplifiĂ©â€ qui pourrait la remplacer dans un futur proche. J’examine Ă©galement une analyse de type ”filtre de Kalman d’ensemble” (EnKF) actuellement trĂšs en vogue dans la communautĂ© hydrologique amĂ©ricaine. Dans une deuxiĂšme partie, j’assimile des observations d’eau du sol superficiel avec une rĂ©pĂ©titivitĂ© de trois jours par 3 mĂ©thodes (2D-Var, Filtre de Kalman Ă©tendu, EnKF). Je montre qu’il n’est pas nĂ©cessaire d’utiliser une fenĂȘtre d’assimilation de 10 jours dans un systĂšme d’analyse cyclĂ©. L’impact de ces observations n’est significatif que si leur erreur est comparable Ă  celle du champ d’essai. Finalement, je regarde la possibilitĂ© de combiner ces observations avec les donnĂ©es Ă  2 mĂštres disponibles plus frĂ©quemment. L’ensemble de ces tests utilise des observations simulĂ©es (expĂ©riences de type ”jumeaux identiques”). Les rĂ©sultats obtenus sont extrĂȘmement encourageants et plaident en faveur du dĂ©veloppement d’une assimilation de surface ”multi-observations” dans le systĂšme externalisĂ© SURFEX au moyen d’une mĂ©thode de type ”2D-Var simplifiĂ© ́”
    corecore