22 research outputs found

    A Binary Grey Wolf Optimizer with Mutation for Mining Association Rules

    Get PDF
    In this decade, the internet becomes indispensable in companies and people life. Therefore, a huge quantity of data, which can be a source of hidden information such as association rules that help in decision-making, is stored. Association rule mining (ARM) becomes an attractive data mining task to mine hidden correlations between items in sizeable databases. However, this task is a combinatorial hard problem and, in many cases, the classical algorithms generate extremely large number of rules, that are useless and hard to be validated by the final user. In this paper, we proposed a binary version of grey wolf optimizer that is based on sigmoid function and mutation technique to deal with ARM issue, called BGWOARM. It aims to generate a minimal number of useful and reduced number of rules. It is noted from the several carried out experimentations on well-known benchmarks in the field of ARM, that results are promising, and the proposed approach outperforms other nature-inspired algorithms in terms of quality, number of rules, and runtime consumption

    Optimal Type-3 Fuzzy System for Solving Singular Multi-Pantograph Equations

    Get PDF
    In this study a new machine learning technique is presented to solve singular multi-pantograph differential equations (SMDEs). A new optimized type-3 fuzzy logic system (T3-FLS) by unscented Kalman filter (UKF) is proposed for solution estimation. The convergence and stability of presented algorithm are ensured by the suggested Lyapunov analysis. By two SMDEs the effectiveness and applicability of the suggested method is demonstrated. The statistical analysis show that the suggested method results in accurate and robust performance and the estimated solution is well converged to the exact solution. The proposed algorithm is simple and can be applied on various SMDEs with variable coefficients.publishedVersio

    Optimal type-3 fuzzy system for solving singular multi-pantograph equations

    Get PDF
    In this study a new machine learning technique is presented to solve singular multi-pantograph differential equations (SMDEs). A new optimized type-3 fuzzy logic system (T3-FLS) by unscented Kalman filter (UKF) is proposed for solution estimation. The convergence and stability of presented algorithm are ensured by the suggested Lyapunov analysis. By two SMDEs the effectiveness and applicability of the suggested method is demonstrated. The statistical analysis show that the suggested method results in accurate and robust performance and the estimated solution is well converged to the exact solution. The proposed algorithm is simple and can be applied on various SMDEs with variable coefficients

    Enhanced Gaussian Bare-Bones Grasshopper Optimization: Mitigating the Performance Concerns for Feature Selection

    Get PDF
    As a recent meta-heuristic algorithm, the uniqueness of the grasshopper optimization algorithm (GOA) is to imitate the biological features of grasshoppers for single-objective optimization cases. Despite its advanced optimization ability, the basic GOA has a set of shortcomings that pose challenges in numerous practical scenarios. The GOA core limit is its early convergence to the local optimum and suffering from slow convergence. To mitigate these concerns, this study adopts the elite opposition-based learning and bare-bones Gaussian strategy to extend GOA\u27s global and local search capabilities and effectively balance the exploration and exploitation inclinations. Specifically, elite opposition-based learning can help find better solutions at the early stage of exploration, while the bare-bones Gaussian strategy has an excellent ability to update the search agents. To evaluate the robustness of the proposed Enhanced GOA (EGOA) based on global constrained and unconstrained optimization problems, a straight comparison was made between the proposed EGOA and other meta-heuristics on 30 IEEE CEC2017 benchmark tasks. Moreover, we applied it experimentally to structural design problems and its binary version to the feature selection cases. Findings demonstrate the effectiveness of EGOA and its binary version as an acceptable tool for optimization and feature selection purposes

    RECORD-TO-RECORD TRAVEL ALGORITHM FOR ATTRIBUTE REDUCTION IN ROUGH SET THEORY

    No full text
    Attribute reduction is the process of selecting a minimal attribute subset from a problem domain while retaining a suitably high accuracy in representing the original attributes. In this work, we propose a new attribute reduction algorithm called record-to-record travel (RRT) algorithm and employ a rough set theory as a mathematical tool to evaluate the quality of the obtained solutions. RRT is an optimization algorithm that is inspired from simulated annealing, which depends on a single parameter called DEVIATION. Experimental results on 13 well known UCI datasets show that the proposed method, coded as RRTAR, is comparable with other rough set-based attribute reduction methods available in the literature

    S-Shaped vs. V-Shaped Transfer Functions for Ant Lion Optimization Algorithm in Feature Selection Problem

    No full text
    Feature selection is an important preprocessing step for classification problems. It deals with selecting near optimal features in the original dataset. Feature selection is an NP-hard problem, so meta-heuristics can be more efficient than exact methods. In this work, Ant Lion Optimizer (ALO), which is a recent metaheuristic algorithm, is employed as a wrapper feature selection method. Six variants of ALO are proposed where each employ a transfer function to map a continuous search space to a discrete search space. The performance of the proposed approaches is tested on eighteen UCI datasets and compared to a number of existing approaches in the literature: Particle Swarm Optimization, Gravitational Search Algorithm and two existing ALO-based approaches. Computational experiments show that the proposed approaches efficiently explore the feature space and select the most informative features, which help to improve the classification accuracy

    Towards Precision Fertilization: Multi-Strategy Grey Wolf Optimizer Based Model Evaluation and Yield Estimation

    No full text
    Precision fertilization is a major constraint in consistently balancing the contradiction between land resources, ecological environment, and population increase. Even more, it is a popular technology used to maintain sustainable development. Nitrogen (N), phosphorus (P), and potassium (K) are the main sources of nutrient income on farmland. The traditional fertilizer effect function cannot meet the conditional agrochemical theory’s conditional extremes because the soil is influenced by various factors and statistical errors in harvest and yield. In order to find more accurate scientific ratios, it has been proposed a multi-strategy-based grey wolf optimization algorithm (SLEGWO) to solve the fertilizer effect function in this paper, using the “3414” experimental field design scheme, taking the experimental field in Nongan County, Jilin Province as the experimental site to obtain experimental data, and using the residuals of the ternary fertilizer effect function of Nitrogen, phosphorus, and potassium as the target function. The experimental results showed that the SLEGWO algorithm could improve the fitting degree of the fertilizer effect equation and then reasonably predict the accurate fertilizer application ratio and improve the yield. It is a more accurate precision fertilization modeling method. It provides a new means to solve the problem of precision fertilizer and soil testing and fertilization
    corecore