307 research outputs found
Stability of strangelet at finite temperature
Using the quark mass density- and temperature dependent model, we have
studied the thermodynamical properties and the stability of strangelet at
finite temperature. The temperature, charge and strangeness dependences on the
stability of strangelet are investigated. We find that the stable strangelets
are only occured in the high strangeness and high negative charge region.Comment: 12 pages, 14 figure
Strange quark matter in a chiral SU(3) quark mean field model
We apply the chiral SU(3) quark mean field model to investigate strange quark
matter. The stability of strange quark matter with different strangeness
fraction is studied. The interaction between quarks and vector mesons
destabilizes the strange quark matter. If the strength of the vector coupling
is the same as in hadronic matter, strangelets can not be formed. For the case
of beta equilibrium, there is no strange quark matter which can be stable
against hadron emission even without vector meson interactions.Comment: 19 pages, 8 figure
Origin of the photoemission final-state effects in Bi2Sr2CaCu2O8 by very-low-energy electron diffraction
Very-low-energy electron diffraction with a support of full-potential band
calculations is used to achieve the energy positions, K// dispersions,
lifetimes and Fourier compositions of the photoemission final states in
Bi2Sr2CaCu2O8 at low excitation energies. Highly structured final states
explain the dramatic matrix element effects in photoemission. Intense c(2x2)
diffraction reveals a significant extrinsic contribution to the shadow Fermi
surface. The final-state diffraction effects can be utilized to tune the
photoemission experiment on specific valence states or Fermi surface replicas.Comment: 4 pages, 3 Postscript figures, submitted to Phys. Rev. Lett; major
revision
Deterministic delivery of externally cold and precisely positioned single molecular ions
We present the preparation and deterministic delivery of a selectable number
of externally cold molecular ions. A laser cooled ensemble of Mg^+ ions
subsequently confined in several linear Paul traps inter-connected via a
quadrupole guide serves as a cold bath for a single or up to a few hundred
molecular ions. Sympathetic cooling embeds the molecular ions in the
crystalline structure. MgH^+ ions, that serve as a model system for a large
variety of other possible molecular ions, are cooled down close to the Doppler
limit and are positioned with an accuracy of one micrometer. After the
production process, severely compromising the vacuum conditions, the molecular
ion is efficiently transfered into nearly background-free environment. The
transfer of a molecular ion between different traps as well as the control of
the molecular ions in the traps is demonstrated. Schemes, optimized for the
transfer of a specific number of ions, are realized and their efficiencies are
evaluated. This versatile source applicable for broad charge-to-mass ratios of
externally cold and precisely positioned molecular ions can serve as a
container-free target preparation device well suited for diffraction or
spectroscopic measurements on individual molecular ions at high repetition
rates (kHz).Comment: 11 pages, 8 figure
Surface layering of liquids: The role of surface tension
Recent measurements show that the free surfaces of liquid metals and alloys
are always layered, regardless of composition and surface tension; a result
supported by three decades of simulations and theory. Recent theoretical work
claims, however, that at low enough temperatures the free surfaces of all
liquids should become layered, unless preempted by bulk freezing. Using x-ray
reflectivity and diffuse scattering measurements we show that there is no
observable surface-induced layering in water at T=298 K, thus highlighting a
fundamental difference between dielectric and metallic liquids. The
implications of this result for the question in the title are discussed.Comment: 5 pages, 4 figures, to appear in Phys. Rev. B. 69 (2004
Primordial nuggets survival and QCD pairing
We revisit the problem of boiling and surface evaporation of quark nuggets in
the cosmological quark-hadron transition with the explicit consideration of
pairing between quarks in a color-flavor locked (CFL) state. Assuming that
primordial quark nuggets are actually formed, we analyze the consequences of
pairing on the rates of boiling and surface evaporation in order to determine
whether they could have survived with substantial mass. We find a substantial
quenching of the evaporation + boiling processes, which suggests the survival
of primordial nuggets for the currently considered range of the pairing gap
. Boiling is shown to depend on the competition of an increased
stability window and the suppression of the rate, and is not likely to dominate
the destruction of the nuggets. If surface evaporation dominates, the fate of
the nuggets depend on the features of the initial mass spectrum of the nuggets,
their evaporation rate, and the value of the pairing gap, as shown and
discussed in the text.Comment: 6 pages, 4 figure
Bianchi type I space and the stability of inflationary Friedmann-Robertson-Walker space
Stability analysis of the Bianchi type I universe in pure gravity theory is
studied in details. We first derive the non-redundant field equation of the
system by introducing the generalized Bianchi type I metric. This non-redundant
equation reduces to the Friedmann equation in the isotropic limit. It is shown
further that any unstable mode of the isotropic perturbation with respect to a
de Sitter background is also unstable with respect to anisotropic
perturbations. Implications to the choice of physical theories are discussed in
details in this paper.Comment: 5 pages, some comment adde
Pulsar-wind nebulae and magnetar outflows: observations at radio, X-ray, and gamma-ray wavelengths
We review observations of several classes of neutron-star-powered outflows:
pulsar-wind nebulae (PWNe) inside shell supernova remnants (SNRs), PWNe
interacting directly with interstellar medium (ISM), and magnetar-powered
outflows. We describe radio, X-ray, and gamma-ray observations of PWNe,
focusing first on integrated spectral-energy distributions (SEDs) and global
spectral properties. High-resolution X-ray imaging of PWNe shows a bewildering
array of morphologies, with jets, trails, and other structures. Several of the
23 so far identified magnetars show evidence for continuous or sporadic
emission of material, sometimes associated with giant flares, and a few
possible "magnetar-wind nebulae" have been recently identified.Comment: 61 pages, 44 figures (reduced in quality for size reasons). Published
in Space Science Reviews, "Jets and Winds in Pulsar Wind Nebulae, Gamma-ray
Bursts and Blazars: Physics of Extreme Energy Release
Paleobiology of titanosaurs: reproduction, development, histology, pneumaticity, locomotion and neuroanatomy from the South American fossil record
Fil: GarcĂa, Rodolfo A.. Instituto de InvestigaciĂłn en PaleobiologĂa y GeologĂa. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Salgado, Leonardo. Instituto de InvestigaciĂłn en PaleobiologĂa y GeologĂa. General Roca. RĂo Negro; ArgentinaFil: Fernández, Mariela. Inibioma-Centro Regional Universitario Bariloche. Bariloche. RĂo Negro; ArgentinaFil: Cerda, Ignacio A.. Instituto de InvestigaciĂłn en PaleobiologĂa y GeologĂa. Museo Provincial Carlos Ameghino. Cipolletti; ArgentinaFil: Carabajal, Ariana Paulina. Museo Carmen Funes. Plaza Huincul. NeuquĂ©n; ArgentinaFil: Otero, Alejandro. Museo de La Plata. Universidad Nacional de La Plata; ArgentinaFil: Coria, Rodolfo A.. Instituto de PaleobiologĂa y GeologĂa. Universidad Nacional de RĂo Negro. NeuquĂ©n; ArgentinaFil: Fiorelli, Lucas E.. Centro Regional de Investigaciones CientĂficas y Transferencia TecnolĂłgica. Anillaco. La Rioja; Argentin
- …